Pathological Analysis of Blood Cells Using Deep Learning Techniques
- URL: http://arxiv.org/abs/2111.03274v1
- Date: Fri, 5 Nov 2021 05:37:10 GMT
- Title: Pathological Analysis of Blood Cells Using Deep Learning Techniques
- Authors: Virender Ranga, Shivam Gupta, Priyansh Agrawal and Jyoti Meena
- Abstract summary: A neural based network has been proposed for classification of blood cells images into various categories.
The performance of proposed model is better than existing standard architectures and work done by various researchers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pathology deals with the practice of discovering the reasons for disease by
analyzing the body samples. The most used way in this field, is to use
histology which is basically studying and viewing microscopic structures of
cell and tissues. The slide viewing method is widely being used and converted
into digital form to produce high resolution images. This enabled the area of
deep learning and machine learning to deep dive into this field of medical
sciences. In the present study, a neural based network has been proposed for
classification of blood cells images into various categories. When input image
is passed through the proposed architecture and all the hyper parameters and
dropout ratio values are used in accordance with proposed algorithm, then model
classifies the blood images with an accuracy of 95.24%. The performance of
proposed model is better than existing standard architectures and work done by
various researchers. Thus model will enable development of pathological system
which will reduce human errors and daily load on laboratory men. This will in
turn help pathologists in carrying out their work more efficiently and
effectively.
Related papers
- Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
arXiv Detail & Related papers (2024-06-30T16:49:29Z) - Improving Classification of Retinal Fundus Image Using Flow Dynamics
Optimized Deep Learning Methods [0.0]
Diabetic Retinopathy (DR) refers to a barrier that takes place in diabetes mellitus damaging the blood vessel network present in the retina.
It can take some time to perform a DR diagnosis using color fundus pictures because experienced clinicians are required to identify the tumors in the imagery used to identify the illness.
arXiv Detail & Related papers (2023-04-29T16:11:34Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - A Morphology Focused Diffusion Probabilistic Model for Synthesis of
Histopathology Images [0.5541644538483947]
Deep learning methods have made significant advances in the analysis and classification of tissue images.
These synthetic images have several applications in pathology including utilities in education, proficiency testing, privacy, and data sharing.
arXiv Detail & Related papers (2022-09-27T05:58:35Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - A Deep Reinforcement Learning Framework for Rapid Diagnosis of Whole
Slide Pathological Images [4.501311544043762]
We propose a weakly supervised deep reinforcement learning framework, which can greatly reduce the time required for network inference.
We use neural network to construct the search model and decision model of reinforcement learning agent respectively.
Experimental results show that our proposed method can achieve fast inference and accurate prediction of whole slide images without any pixel-level annotations.
arXiv Detail & Related papers (2022-05-05T14:20:29Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
We benchmark 27 popular deep convolutional neural network architectures on the microscopic peripheral blood cell images dataset.
We fine-tune the state-of-the-art image classification models pre-trained on the ImageNet dataset for blood cell classification.
arXiv Detail & Related papers (2021-10-18T17:56:07Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Self-Supervised Representation Learning using Visual Field Expansion on
Digital Pathology [7.568373895297608]
A key challenge in the analysis of such images is their size, which can run into the gigapixels.
We propose a novel generative framework that can learn powerful representations for such tiles by learning to plausibly expand their visual field.
Our model learns to generate different tissue types with fine details, while simultaneously learning powerful representations that can be used for different clinical endpoints.
arXiv Detail & Related papers (2021-09-07T19:20:01Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.