Melting a Rydberg ice to a topological spin liquid with cavity vacuum
fluctuation
- URL: http://arxiv.org/abs/2109.03741v2
- Date: Wed, 17 Nov 2021 13:04:04 GMT
- Title: Melting a Rydberg ice to a topological spin liquid with cavity vacuum
fluctuation
- Authors: H. R. Kong, J. Taylor, Y. Dong, K. S. Choi
- Abstract summary: Quantum spin liquids are exotic phases of matter that are prevented from being frozen even at zero temperature, and appear disordered by local probes that monitor the subsystems.
Driven by quantum fluctuations, topological spin liquids are manifested by their long-range entanglement, and are characterized by quasiparticles with fractional statistics.
Our work provides the first microscopic detection of anyons in a topological quantum matter, and heralds the arrival of strongly-coupled many-body QED.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum spin liquids are exotic phases of matter that are prevented from
being frozen even at zero temperature, and appear disordered by local probes
that monitor the subsystems. Driven by quantum fluctuations, topological spin
liquids are manifested by their long-range entanglement, and are characterized
by quasiparticles with fractional statistics. Here, we make contact of a 2D
Rydberg ice to a QED vacuum of an ultra-high-finesse optical cavity, and
dynamically promote the frustrated background field of the spin ice to a
$\mathbb{Z}_2$ spin liquid. We characterize the deconfined nature of the
dynamical gauge theory residing in the strongly-correlated Rydberg matter with
Wilsonian loops. We observe the proliferation of vison and spinon pairs by
site-resolved fluorescence imaging, and detect the exchange statistical angle
$\theta_{\text{top}}\sim\pi/2$ between the two anyons by monitoring the
dynamical correlators of the fluctuating cavity photons. Our work provides the
first microscopic detection of anyons in a topological quantum matter, and
heralds the arrival of strongly-coupled many-body QED, where interacting matter
and light are put on equal footing at the level of individual quanta.
Related papers
- Hilbert Space Fragmentation and Subspace Scar Time-Crystallinity in
Driven Homogeneous Central-Spin Models [5.9969431417128405]
We study the stroboscopic non-equilibrium quantum dynamics of periodically kicked Hamiltonians involving homogeneous central-spin interactions.
The system exhibits a strong fragmentation of Hilbert space into four-dimensional Floquet-Krylov subspaces.
arXiv Detail & Related papers (2024-02-28T02:30:40Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Classification and emergence of quantum spin liquids in chiral Rydberg
models [0.0]
We investigate the nature of quantum phases arising in chiral interacting Hamiltonians recently realized in Rydberg atom arrays.
We classify all possible fermionic chiral spin liquids with $mathrmU(1)$ global symmetry using parton construction on the honeycomb lattice.
arXiv Detail & Related papers (2023-03-22T18:00:02Z) - Emergent glassy behavior in a kagome Rydberg atom array [3.495071802618309]
We present large-scale quantum Monte Carlo simulation results on a realistic Hamiltonian of kagome-lattice Rydberg atom arrays.
Although the system has no intrinsic disorder, intriguingly, our analyses of static and dynamic properties reveal textitemergent glassy behavior.
arXiv Detail & Related papers (2023-01-17T19:00:05Z) - Kagome qubit ice [55.73970798291771]
Topological phases of spin liquids with constrained disorder can host a kinetics of fractionalized excitations.
We present a realization of kagome spin ice in the superconducting qubits of a quantum annealer.
We show evidence of both the Ice-I phase and an unconventional field-induced Ice-II phase.
arXiv Detail & Related papers (2023-01-04T23:46:48Z) - Room-temperature coherent optical manipulation of single-hole spins in
solution-grown perovskite quantum dots [3.5994174958472316]
Current systems either operate at very low temperatures or are difficult to scale-up.
Here we report manipulation and readout of single-hole spins in an ensemble of solution-grown CsPbBr3 QDs.
These operations accomplish nearly complete quantum-state control of single-hole spins at room temperature.
arXiv Detail & Related papers (2022-08-24T15:32:24Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Quantum dynamics in low-dimensional topological systems [0.0]
We study the quantum dynamics that take place in low dimensional topological systems, specifically 1D and 2D lattices.
We find that the topological nature of the bath reflects itself in the photon bound states and the effective dipolar interactions between the emitters.
arXiv Detail & Related papers (2020-08-05T10:58:35Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.