論文の概要: Feature Selection on Thermal-stress Dataset
- arxiv url: http://arxiv.org/abs/2109.03755v1
- Date: Wed, 8 Sep 2021 16:17:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 20:34:35.511787
- Title: Feature Selection on Thermal-stress Dataset
- Title(参考訳): 熱ストレスデータセットの特徴選択
- Authors: Xuyang Shen, Jo Plested, Tom Gedeon
- Abstract要約: 本研究では,熱ストレスデータであるANUstressDBから適切な特徴を選択することで,ストレス分類を改善することを目的とする。
相関分析,等級測定,遺伝的アルゴリズムの3つの特徴選択手法について検討した。
- 参考スコア(独自算出の注目度): 3.885779089924737
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Physical symptoms caused by high stress commonly happen in our daily lives,
leading to the importance of stress recognition systems. This study aims to
improve stress classification by selecting appropriate features from
Thermal-stress data, ANUstressDB. We explored three different feature selection
techniques: correlation analysis, magnitude measure, and genetic algorithm.
Support Vector Machine (SVM) and Artificial Neural Network (ANN) models were
involved in measuring these three algorithms. Our result indicates that the
genetic algorithm combined with ANNs can improve the prediction accuracy by
19.1% compared to the baseline. Moreover, the magnitude measure performed best
among the three feature selection algorithms regarding the balance of
computation time and performance. These findings are likely to improve the
accuracy of current stress recognition systems.
- Abstract(参考訳): 高ストレスによって引き起こされる身体症状は日常生活で一般的に起こり、ストレス認識システムの重要性が高まる。
本研究では,熱ストレスデータであるANUstressDBから適切な特徴を選択することで,ストレス分類を改善することを目的とする。
相関分析,マグニチュード測定,遺伝的アルゴリズムという3つの異なる特徴選択手法を検討した。
サポートベクターマシン(svm)とニューラルネットワーク(ann)モデルはこれら3つのアルゴリズムの測定に関与した。
その結果,ANNと組み合わせた遺伝的アルゴリズムは,ベースラインと比較して予測精度を19.1%向上できることがわかった。
さらに,計算時間と性能のバランスに関する3つの特徴選択アルゴリズムの中で,測定値が最良であった。
これらの結果は、現在のストレス認識システムの精度を向上させる可能性が高い。
関連論文リスト
- Continuous Wavelet Transformation and VGG16 Deep Neural Network for Stress Classification in PPG Signals [0.22499166814992436]
本研究は,光胸腺X線信号によるストレス分類における画期的なアプローチを提案する。
連続ウェーブレット変換(CWT)を実証されたVGG16に組み込むことで,ストレス評価精度と信頼性を向上させる。
論文 参考訳(メタデータ) (2024-10-17T19:29:52Z) - Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
スパースニューラルネットワーク(SNN)は、効率的な特徴選択のための強力なツールとして登場した。
動的スパーストレーニング(DST)アルゴリズムで訓練されたSNNは、平均して50%以上のメモリと55%以上のFLOPを削減できることを示す。
以上の結果から,DSTアルゴリズムで訓練したSNNによる特徴選択は,平均して50ドル以上のメモリと55%のFLOPを削減できることがわかった。
論文 参考訳(メタデータ) (2024-08-08T16:48:33Z) - Research on Early Warning Model of Cardiovascular Disease Based on Computer Deep Learning [5.761426161930679]
本研究は,1次元畳み込みニューラルネットワークに基づく心血管疾患早期警戒モデルについて検討することを目的とする。
患者年齢,血糖値,コレステロール値,胸痛値などの生理・症状指標が欠落し,Zスコアが標準化された。
論文 参考訳(メタデータ) (2024-06-13T07:04:22Z) - Stressor Type Matters! -- Exploring Factors Influencing Cross-Dataset Generalizability of Physiological Stress Detection [5.304745246313982]
本研究では,2次応力検出のためのHRV機能に基づいて学習した機械学習モデルの一般化可能性について検討する。
以上の結果から,モデル一般化可能性に重要な因子であるストレスタイプが示唆された。
我々は、新しい環境にHRVベースのストレスモデルを展開する際に、ストレスタイプをマッチングすることを推奨する。
論文 参考訳(メタデータ) (2024-05-06T14:47:48Z) - Analyzing the Capabilities of Nature-inspired Feature Selection
Algorithms in Predicting Student Performance [0.0]
本稿では,学生のパフォーマンス予測に使用するアンサンブルアルゴリズムの特徴選択部分において,自然に触発されたアルゴリズムの相対的性能について分析を行った。
その結果,自然に着想を得たアルゴリズムを特徴選択に利用し,従来のMLアルゴリズムを分類に利用することで,予測精度が向上し,特徴セットのサイズを最大65%削減できることがわかった。
論文 参考訳(メタデータ) (2023-08-15T21:18:52Z) - Multiple Instance Ensembling For Paranasal Anomaly Classification In The
Maxillary Sinus [46.1292414445895]
副鼻腔奇形は幅広い形態学的特徴を持つ。
副鼻腔異常分類への現在のアプローチは、一度に1つの異常を特定することに制約されている。
3次元畳み込みニューラルネットワーク(CNN)を用いて正常上顎骨(MS)とMSをポリープや嚢胞で分類する可能性を検討した。
論文 参考訳(メタデータ) (2023-03-31T09:23:27Z) - Kernel-Based Distributed Q-Learning: A Scalable Reinforcement Learning
Approach for Dynamic Treatment Regimes [37.06048335758881]
本稿では,動的処理系を生成するための分散Q-ラーニングアルゴリズムを提案する。
提案アルゴリズムは従来の線形Q-ラーニングよりも優れており,予測精度と計算コストの両方でよく使用される深層Q-ラーニングよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-02-21T04:15:34Z) - Reinforced Genetic Algorithm for Structure-based Drug Design [38.134929249388406]
SBDD(Structure-based drug design)は、疾患関連タンパク質(ターゲット)に結合する分子を見つけることにより、薬物候補を見つけることを目的とした薬物設計である。
本稿では,ニューラルネットワークを用いた遺伝的アルゴリズム(Reinforced Genetic Algorithm, RGA)を提案する。
論文 参考訳(メタデータ) (2022-11-28T22:59:46Z) - What Makes Graph Neural Networks Miscalibrated? [48.00374886504513]
グラフニューラルネットワーク(GNN)の校正特性に関する系統的研究を行う。
我々は,GNNのキャリブレーションに影響を与える5つの要因を同定する: 一般信頼度傾向, ノード単位の予測分布の多様性, 訓練ノード間距離, 相対信頼度, 近傍類似度。
我々は,グラフニューラルネットワークのキャリブレーションに適した新しいキャリブレーション手法であるグラフアテンション温度スケーリング(GATS)を設計する。
論文 参考訳(メタデータ) (2022-10-12T16:41:42Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - An optimized hybrid solution for IoT based lifestyle disease
classification using stress data [2.3909933791900326]
提案手法は、被験者の心電図(ECG)、ガルバニック皮膚値(GSV)、HRV値、体の動きを測定するテストを用いている。
開発したアプローチは、WASADデータセットを使用して、クラス不均衡問題に対処することができる。
論文 参考訳(メタデータ) (2022-04-04T05:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。