論文の概要: Stressor Type Matters! -- Exploring Factors Influencing Cross-Dataset Generalizability of Physiological Stress Detection
- arxiv url: http://arxiv.org/abs/2405.09563v1
- Date: Mon, 6 May 2024 14:47:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-19 13:49:26.424082
- Title: Stressor Type Matters! -- Exploring Factors Influencing Cross-Dataset Generalizability of Physiological Stress Detection
- Title(参考訳): ストレス型物質! - 生理的ストレス検出のクロスデータセットの一般化性に影響を与える因子を探索する
- Authors: Pooja Prajod, Bhargavi Mahesh, Elisabeth André,
- Abstract要約: 本研究では,2次応力検出のためのHRV機能に基づいて学習した機械学習モデルの一般化可能性について検討する。
以上の結果から,モデル一般化可能性に重要な因子であるストレスタイプが示唆された。
我々は、新しい環境にHRVベースのストレスモデルを展開する際に、ストレスタイプをマッチングすることを推奨する。
- 参考スコア(独自算出の注目度): 5.304745246313982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic stress detection using heart rate variability (HRV) features has gained significant traction as it utilizes unobtrusive wearable sensors measuring signals like electrocardiogram (ECG) or blood volume pulse (BVP). However, detecting stress through such physiological signals presents a considerable challenge owing to the variations in recorded signals influenced by factors, such as perceived stress intensity and measurement devices. Consequently, stress detection models developed on one dataset may perform poorly on unseen data collected under different conditions. To address this challenge, this study explores the generalizability of machine learning models trained on HRV features for binary stress detection. Our goal extends beyond evaluating generalization performance; we aim to identify the characteristics of datasets that have the most significant influence on generalizability. We leverage four publicly available stress datasets (WESAD, SWELL-KW, ForDigitStress, VerBIO) that vary in at least one of the characteristics such as stress elicitation techniques, stress intensity, and sensor devices. Employing a cross-dataset evaluation approach, we explore which of these characteristics strongly influence model generalizability. Our findings reveal a crucial factor affecting model generalizability: stressor type. Models achieved good performance across datasets when the type of stressor (e.g., social stress in our case) remains consistent. Factors like stress intensity or brand of the measurement device had minimal impact on cross-dataset performance. Based on our findings, we recommend matching the stressor type when deploying HRV-based stress models in new environments. To the best of our knowledge, this is the first study to systematically investigate factors influencing the cross-dataset applicability of HRV-based stress models.
- Abstract(参考訳): 心拍変動(HRV)機能を用いた自動ストレス検出は、心電図(ECG)や血液量パルス(BVP)などの信号を測定する非邪魔なウェアラブルセンサーを使用することで、大きな注目を集めている。
しかし、そのような生理的信号によるストレス検出は、知覚的なストレス強度や測定装置などの要因に影響された記録信号のばらつきにより、かなり困難である。
その結果、あるデータセット上で開発されたストレス検出モデルは、異なる条件下で収集された目に見えないデータに対して不十分に動作する可能性がある。
この課題に対処するために、二元応力検出のためのHRV機能に基づいて訓練された機械学習モデルの一般化可能性について検討する。
我々の目標は、一般化性能を評価することを超えて、一般化可能性に最も大きな影響を及ぼすデータセットの特徴を特定することを目的としている。
我々は、ストレス誘発技術、ストレス強度、センサーデバイスなど、少なくとも1つの特性の1つが異なる4つの公開ストレスデータセット(WESAD、SWELL-KW、ForDigitStress、VerBIO)を活用している。
クロスデータセット評価手法を用いて、これらの特徴のどれがモデルの一般化可能性に強く影響するかを考察する。
以上の結果から,モデル一般化可能性に重要な因子であるストレスタイプが示唆された。
モデルがデータセット全体にわたって優れたパフォーマンスを達成したのは,ストレスの種類(例えば,私たちの場合の社会的ストレス)が一貫している場合です。
ストレス強度や測定装置のブランドなどの要因は、データセット間のパフォーマンスに最小限の影響を及ぼした。
本研究は,新しい環境にHRVベースのストレスモデルを展開する際のストレスタイプをマッチングすることを推奨する。
我々の知る限りでは、HRVベースのストレスモデルのクロスデータセット適用性に影響を与える要因を体系的に研究するのはこれが初めてである。
関連論文リスト
- Stress Assessment with Convolutional Neural Network Using PPG Signals [0.22499166814992436]
本研究は,Empatica E4 センサによって記録された生の PPG 信号を用いてストレスのある事象を評価する新しい手法の開発に焦点をあてる。
マルチレイヤパーセプトロン(MLP)と組み合わせた適応畳み込みニューラルネットワーク(CNN)を用いて、ストレスのある事象の検出を実現している。
この研究は、一般公開され、ウェアラブルストレスとエフェクト検出(WESAD)と名付けられたデータセットを使用する。
論文 参考訳(メタデータ) (2024-10-16T06:24:16Z) - Investigating the Generalizability of Physiological Characteristics of Anxiety [3.4036712573981607]
不安やストレスと高覚醒感情との関連が示された生理的特徴の一般化可能性を評価する。
この研究は、心電図やEDA信号からストレスと覚醒を横断する最初のクロスコーパス評価であり、ストレス検出の一般化性に関する新たな発見に寄与した。
論文 参考訳(メタデータ) (2024-01-23T16:49:54Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Understanding Robust Overfitting from the Feature Generalization Perspective [61.770805867606796]
逆行訓練(AT)は、逆行摂動を自然データに組み込むことで、堅牢なニューラルネットワークを構築する。
これはロバストオーバーフィッティング(RO)の問題に悩まされ、モデルのロバスト性を著しく損なう。
本稿では,新しい特徴一般化の観点からROを考察する。
論文 参考訳(メタデータ) (2023-10-01T07:57:03Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - Analysing the Performance of Stress Detection Models on Consumer-Grade
Wearable Devices [9.580380455705397]
ストレスレベルは、メンタルヘルス分析のための貴重なデータと、アノテーションシステムのためのラベルを提供することができる。
低分解能エレクトロミカルアクティビティ(EDA)信号を用いてストレスパターンを識別する可能性についての研究は乏しい。
論文 参考訳(メタデータ) (2022-03-18T00:36:27Z) - Personalized Stress Monitoring using Wearable Sensors in Everyday
Settings [9.621481727547215]
心拍数(HR)と心拍変動率(HRV)に基づく日常生活ストレスレベルの客観的予測について検討する。
本稿では、ラベル付けのためのデータサンプルの調整可能なコレクションをサポートする、個人化されたストレス監視のための階層化システムアーキテクチャと、ラベル付けのためのリアルタイムデータのストリームから情報化サンプルを選択する方法を提案する。
論文 参考訳(メタデータ) (2021-07-31T04:15:15Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - StressNet: Detecting Stress in Thermal Videos [10.453959171422147]
本稿では, サーマルビデオから生理的信号を取得し, ストレス状態を分類するための新しい手法を提案する。
ストレスネット (StressNet) は、ストレス人の定量的指標と考えられる心交感神経活動の変化の尺度であるISTI (Initial Systolic Time Interval) を再構成する。
詳細な評価では、ISTI信号の95%の精度で推定し、平均精度0.842で応力を検出することが示されている。
論文 参考訳(メタデータ) (2020-11-18T20:47:23Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。