論文の概要: Detecting Attacks on IoT Devices using Featureless 1D-CNN
- arxiv url: http://arxiv.org/abs/2109.03989v1
- Date: Thu, 9 Sep 2021 01:22:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-11 08:09:20.026787
- Title: Detecting Attacks on IoT Devices using Featureless 1D-CNN
- Title(参考訳): フィーチャーレス1D-CNNによるIoTデバイスの攻撃検出
- Authors: Arshiya Khan, Chase Cotton
- Abstract要約: フィーチャーレス機械学習は、ネットワークトラフィックの低コストで低メモリの時系列解析を可能にする。
課題の専門家への多大な投資を排除し、機能エンジニアリングに要する時間を削減することで利益を得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generalization of deep learning has helped us, in the past, address
challenges such as malware identification and anomaly detection in the network
security domain. However, as effective as it is, scarcity of memory and
processing power makes it difficult to perform these tasks in Internet of
Things (IoT) devices. This research finds an easy way out of this bottleneck by
depreciating the need for feature engineering and subsequent processing in
machine learning techniques. In this study, we introduce a Featureless machine
learning process to perform anomaly detection. It uses unprocessed byte streams
of packets as training data. Featureless machine learning enables a low cost
and low memory time-series analysis of network traffic. It benefits from
eliminating the significant investment in subject matter experts and the time
required for feature engineering.
- Abstract(参考訳): ディープラーニングの一般化は,ネットワークセキュリティ領域におけるマルウェアの識別や異常検出といった課題に,これまでも取り組んできた。
しかし、効果的なメモリと処理能力の不足は、iot(internet of things)デバイスでこれらのタスクを実行するのを困難にしている。
この研究は、機械学習技術における機能工学とその後の処理の必要性を軽視することで、このボトルネックから抜け出す簡単な方法を見出す。
本研究では,異常検出を行う機能レス機械学習プロセスを提案する。
トレーニングデータとしてパケットの未処理バイトストリームを使用する。
機能レス機械学習は、ネットワークトラフィックの低コストかつ低メモリの時系列分析を可能にする。
課題の専門家への多大な投資と機能エンジニアリングに必要な時間を排除することで利益を得る。
関連論文リスト
- Real-time Threat Detection Strategies for Resource-constrained Devices [1.4815508281465273]
本稿では,ルータ内のDNSトンネリング攻撃を効果的に処理するエンド・ツー・エンド・プロセスを提案する。
我々は、MLモデルをトレーニングするためにステートレスな機能を利用することと、ネットワーク構成から独立して選択した機能を利用することで、非常に正確な結果が得られることを実証した。
さまざまな環境にまたがる組み込みデバイスに最適化されたこの慎重に構築されたモデルのデプロイにより、最小のレイテンシでDNSチューニングされた攻撃検出が可能になった。
論文 参考訳(メタデータ) (2024-03-22T10:02:54Z) - Locality Sensitive Hashing for Network Traffic Fingerprinting [5.062312533373298]
ネットワークトラフィックのフィンガープリントにLSH(Locality-sensitive hashing)を用いる。
本手法は,ネットワーク内のデバイスを識別する際の精度を約94%向上し,最先端の精度を12%向上させる。
論文 参考訳(メタデータ) (2024-02-12T21:14:37Z) - Quantization-aware Neural Architectural Search for Intrusion Detection [5.010685611319813]
本稿では、最先端NNの1000倍の規模を持つ量子化ニューラルネットワーク(NN)モデルを自動的に訓練し、進化させる設計手法を提案する。
FPGAにデプロイする際にこのネットワークが利用するLUTの数は2.3倍から8.5倍と小さく、性能は以前の作業に匹敵する。
論文 参考訳(メタデータ) (2023-11-07T18:35:29Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - Efficient Attack Detection in IoT Devices using Feature Engineering-Less
Machine Learning [0.0]
本研究では,ディープラーニングパイプラインの機能工学をバイパスし,生パケットデータを入力として利用することにより,障壁を克服する方法を提案する。
我々は,IoTデバイス上でマルウェア検出を行う機能エンジニアリングレス機械学習(ML)プロセスを導入する。
提案するモデルである"Feature Engineering-less-ML (FEL-ML)"は、"Engineered"機能に関する余分な計算を不要とする軽量な検出アルゴリズムである。
論文 参考訳(メタデータ) (2023-01-09T17:26:37Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
産業用IoT(Industrial Internet of Things)の継続的な拡大により、IIoT機器は毎回大量のユーザデータを生成する。
IIoTの分野で、これらの時系列データを効率的かつ安全な方法で管理する方法は、依然として未解決の問題である。
本稿では,無線ネットワーク環境におけるIIoT機器データ管理におけるFL技術の適用について検討する。
論文 参考訳(メタデータ) (2022-02-03T07:12:36Z) - An Automated Data Engineering Pipeline for Anomaly Detection of IoT
Sensor Data [0.0]
チップ技術、IoT(Internet of Things)、クラウドコンピューティング、人工知能といったシステムが、現在の問題を解決する可能性を高めている。
データ分析と機械学習/ディープラーニングの使用により、基盤となるパターンを学習し、IoTセンサから生成された大量のデータから何を学んだかに基づいて決定することができる。
プロセスにはIoTセンサ、Raspberry Pi、Amazon Web Services(AWS)、スマートホームセキュリティシステムの異常なケースを特定するための複数の機械学習技術の使用が含まれる。
論文 参考訳(メタデータ) (2021-09-28T15:57:29Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Machine Learning for Massive Industrial Internet of Things [69.52379407906017]
モノのインターネット(IIoT)は、モノのインターネット技術を産業環境に統合することで、将来の製造施設に革命をもたらします。
大規模なIIoTデバイスのデプロイでは、無線ネットワークがさまざまなQoS(Quality-of-Service)要件でユビキタス接続をサポートすることは困難である。
まず、一般的な非クリティカルかつクリティカルなIIoTユースケースの要件を要約します。
次に、大規模なIIoTシナリオと対応する機械学習ソリューションのユニークな特性を、その制限と潜在的な研究方向で識別します。
論文 参考訳(メタデータ) (2021-03-10T20:10:53Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning [73.85267769520715]
IoT(Internet of Things)は、デプロイされるデバイスやアプリケーションの数の増加とともに、ネットワークのメンテナンス手順に大きな課題をもたらしている。
部分観測可能なマルコフ決定プロセスとして,IoTネットワークにおける自律的メンテナンスの問題を定式化する。
深層強化学習アルゴリズム (drl) を用いて, 保守手順が整っているか否かを判断するエージェントを訓練し, 前者の場合, 適切なメンテナンス方法が必要となる。
論文 参考訳(メタデータ) (2020-12-31T11:19:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。