論文の概要: Towards Sustainable Energy-Efficient Data Centers in Africa
- arxiv url: http://arxiv.org/abs/2109.04067v1
- Date: Thu, 9 Sep 2021 07:18:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 18:32:29.460115
- Title: Towards Sustainable Energy-Efficient Data Centers in Africa
- Title(参考訳): アフリカにおける持続可能エネルギー効率データセンターを目指して
- Authors: David Ojika and Jayson Strayer and Gaurav Kaul
- Abstract要約: 2040年までに、世界の排出量の14%はデータセンターから来ることになる。
本稿では、データセンターの運用をモデル化し最適化するためにAIとデジタルツインを用いた初期の知見を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing nations are particularly susceptible to the adverse effects of
global warming. By 2040, 14 percent of global emissions will come from data
centers. This paper presents early findings in the use AI and digital twins to
model and optimize data center operations.
- Abstract(参考訳): 発展途上国は特に地球温暖化の悪影響を受けやすい。
2040年までに世界の排出量の14%がデータセンターから排出される。
本稿では、データセンターの運用をモデル化し最適化するためにAIとデジタルツインを用いた初期の知見を示す。
関連論文リスト
- Environmental Burden of United States Data Centers in the Artificial Intelligence Era [0.5025737475817937]
データセンターは1億5500万トン以上のCO$2$e(2023年の米国の排出量の2.18%)を発生させた
データセンターの炭素強度 - 消費する電力単位当たりのCO$_2$eの排出量 - は、米国平均を48%上回った。
私たちのデータパイプラインと可視化ツールは、データセンターの現在と将来の環境影響を評価するために利用できます。
論文 参考訳(メタデータ) (2024-11-14T19:55:49Z) - Software Frugality in an Accelerating World: the Case of Continuous Integration [2.73028688816111]
私たちは、GitHubで実装された継続的インテグレーションパイプラインのエネルギーフットプリントを、初めて大規模に分析します。
パイプラインの平均単位エネルギーコストは10Whで比較的低い。
地域Wh-to-CO2推定値に基づくCO2排出量の評価では, 平均CO2排出量は10.5kgである。
論文 参考訳(メタデータ) (2024-10-21T09:29:50Z) - Data Contamination Report from the 2024 CONDA Shared Task [78.50743680642405]
この最初のコンピレーション・ペーパーは、合計23人のコントリビュータから91件以上の汚染された資料が報告された566件を基にしている。
共有タスクと関連するデータベースの目標は,問題の範囲の理解と,既知の汚染資源に対する報告評価結果の回避を支援することにある。
論文 参考訳(メタデータ) (2024-07-31T11:26:57Z) - Reducing the climate impact of data portals: a case study [3.116594853744012]
本稿では,MaRDI(Mathematical Research Data Initiative)ポータルのエネルギーフットプリント削減技術について論じる。
今後,これらの変化を実践し,エネルギー効率の向上に関する具体的な測定を行う予定である。
論文 参考訳(メタデータ) (2024-06-06T08:45:36Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - MOSAIC: A Multi-Objective Optimization Framework for Sustainable
Datacenter Management [2.9699290794642366]
持続可能なデータセンター管理のための新しいフレームワークを提案する。
我々は、再生可能エネルギー源、可変エネルギーコスト、電力利用効率、炭素要因、エネルギー中の水強度など、地理的および時間的要因を考慮に入れている。
我々のフレームワークは、最先端技術と比較して最大4.61倍の目的(炭素、水、コスト)で累積的な改善を実現している。
論文 参考訳(メタデータ) (2023-11-14T23:05:37Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Full Scaling Automation for Sustainable Development of Green Data
Centers [4.309694057918802]
クラウドコンピューティングの急速な増加は、データセンターの二酸化炭素排出量の急激な増加をもたらした。
提案するフルスケーリング自動化(FSA)メカニズムは,ワークロードの変化に対応するために,動的にリソースを適用する効果的な方法である。
FSAは、ディープ表現学習の力を利用して、各サービスの将来のワークロードを正確に予測し、対応するターゲットCPU使用レベルを自動的に安定化する。
論文 参考訳(メタデータ) (2023-05-01T08:11:00Z) - Data-centric AI: Perspectives and Challenges [51.70828802140165]
データ中心AI(DCAI)は、モデル進歩からデータ品質と信頼性の確保への根本的なシフトを提唱している。
データ開発、推論データ開発、データメンテナンスの3つの一般的なミッションをまとめます。
論文 参考訳(メタデータ) (2023-01-12T05:28:59Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
本稿では,分散学習政策の環境フットプリントに影響を与える要因を概説し,分析する。
バニラとコンセンサスによって駆動される分散FLポリシーの両方をモデル化する。
その結果、flは低ビット/ジュール効率を特徴とするワイヤレスシステムにおいて、顕著なエンドツーエンドの省エネ(30%-40%)が可能となった。
論文 参考訳(メタデータ) (2021-03-18T16:04:42Z) - A machine learning methodology for real-time forecasting of the
2019-2020 COVID-19 outbreak using Internet searches, news alerts, and
estimates from mechanistic models [53.900779250589814]
提案手法は,2日前の安定かつ正確な予測を行うことができる。
我々のモデルでは,中国32州中27州において,ベースラインモデルよりも予測力が優れています。
論文 参考訳(メタデータ) (2020-04-08T14:39:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。