論文の概要: Reducing the climate impact of data portals: a case study
- arxiv url: http://arxiv.org/abs/2406.03858v1
- Date: Thu, 06 Jun 2024 08:45:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 22:38:22.519664
- Title: Reducing the climate impact of data portals: a case study
- Title(参考訳): データポータルの気候影響低減に関する事例研究
- Authors: Noah Gießing, Madhurima Deb, Ankit Satpute, Moritz Schubotz, Olaf Teschke,
- Abstract要約: 本稿では,MaRDI(Mathematical Research Data Initiative)ポータルのエネルギーフットプリント削減技術について論じる。
今後,これらの変化を実践し,エネルギー効率の向上に関する具体的な測定を行う予定である。
- 参考スコア(独自算出の注目度): 3.116594853744012
- License:
- Abstract: The carbon footprint share of the information and communication technology (ICT) sector has steadily increased in the past decade and is predicted to make up as much as 23 \% of global emissions in 2030. This shows a pressing need for developers, including the information retrieval community, to make their code more energy-efficient. In this project proposal, we discuss techniques to reduce the energy footprint of the MaRDI (Mathematical Research Data Initiative) Portal, a MediaWiki-based knowledge base. In future work, we plan to implement these changes and provide concrete measurements on the gain in energy efficiency. Researchers developing similar knowledge bases can adapt our measures to reduce their environmental footprint. In this way, we are working on mitigating the climate impact of Information Retrieval research.
- Abstract(参考訳): 情報通信技術(ICT)分野の炭素フットプリントシェアは過去10年間で着実に増加しており、2030年には世界の排出量の最大23%を占めると予測されている。
このことは、情報検索コミュニティを含む開発者が、コードをよりエネルギー効率良くするために、強く求めていることを示している。
本稿では,メディアウィキの知識基盤である MaRDI (Mathematical Research Data Initiative) Portal のエネルギーフットプリント削減手法について論じる。
今後の課題として,これらの変更を実施,エネルギー効率の向上に関する具体的な測定を行う予定である。
同様の知識基盤を開発する研究者は、環境のフットプリントを減らすために我々の対策に適応することができる。
このようにして、我々は、情報検索研究の気候への影響軽減に取り組んでいる。
関連論文リスト
- Promoting Reliable Knowledge about Climate Change: A Systematic Review of Effective Measures to Resist Manipulation on Social Media [11.476777375043381]
気候変動に関する操作に対処するための、一般的に推奨されるアプローチには、メディアリテラシーをターゲットとした情報共有や教育キャンペーンが含まれる。
我々は、操作の生成と普及に関わる大規模な商業・政治機関への注意の欠如を含む研究のギャップを見つける。
多くの研究から得られた証拠は、気候変動に関する信頼できる知識を推進し、操作に抵抗するために必要となる政策に関する新たなコンセンサスを示している。
論文 参考訳(メタデータ) (2024-10-31T10:58:38Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
メタン (CH_4) は強力な温室効果ガスであり、20年間で二酸化炭素 (CO_2) の86倍の温暖化に寄与する。
この研究は、ショートウェーブ赤外線(SWIR)帯域におけるメタン点源検出センサの既存の情報を拡張する。
従来の機械学習(ML)アプローチと同様に、最先端の技術をレビューする。
論文 参考訳(メタデータ) (2024-08-27T15:03:20Z) - Towards A Comprehensive Assessment of AI's Environmental Impact [0.5982922468400899]
機械学習に対する最近の関心の高まりは、AI/MLの大規模採用に拍車をかけた。
ライフサイクルを通じて、AI/MLから環境への影響と劣化を監視するフレームワークが必要である。
本研究では、オープンなエネルギーデータとグローバルに取得した衛星観測を用いて、データセンター周辺におけるAIの多面的影響に関連する環境変数を追跡する手法を提案する。
論文 参考訳(メタデータ) (2024-05-22T21:19:35Z) - Multi-modal Representation Learning for Cross-modal Prediction of
Continuous Weather Patterns from Discrete Low-Dimensional Data [12.25603295884306]
世界は地球温暖化に寄与する温室効果ガス排出量を減らすため、環境を汚染しないクリーンで再生可能エネルギー源を探している。
風力エネルギーは温室効果ガスの排出を減少させるだけでなく、エネルギー需要の増加に対応する大きな可能性を持っている。
風力エネルギーの有効利用を実現するためには,以下の3つの課題に対処することが重要である。
論文 参考訳(メタデータ) (2024-01-30T12:03:40Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Assessing Scientific Contributions in Data Sharing Spaces [64.16762375635842]
本稿では、研究者の科学的貢献を測定するブロックチェーンベースのメトリクスであるSCIENCE-indexを紹介する。
研究者にデータ共有のインセンティブを与えるため、SCIENCE-indexはデータ共有パラメータを含むように拡張されている。
本モデルは, 地理的に多様な研究者の出力分布とh-indexの分布を比較して評価する。
論文 参考訳(メタデータ) (2023-03-18T19:17:47Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。
私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-10T17:04:04Z) - Data-Centric Green AI: An Exploratory Empirical Study [6.4265933507484]
データ中心のアプローチがAIエネルギー効率に与える影響について検討する。
以上の結果から,データセットの変更を排他的に行うことで,エネルギー消費を大幅に削減できることが示唆された。
我々の研究成果は、グリーンAIをさらに有効化し民主化するためのデータ中心技術に焦点を当てた研究課題である。
論文 参考訳(メタデータ) (2022-04-06T12:22:43Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
近年、企業は環境への影響を緩和し、気候変動の状況に適応することを目指している。
これは、環境・社会・ガバナンス(ESG)の傘下にある様々な種類の気候リスクと暴露を網羅する、ますます徹底した報告を通じて報告されている。
本稿では,本稿で開発したツールと方法論について紹介する。
論文 参考訳(メタデータ) (2020-11-03T21:22:42Z) - AI Chiller: An Open IoT Cloud Based Machine Learning Framework for the
Energy Saving of Building HVAC System via Big Data Analytics on the Fusion of
BMS and Environmental Data [12.681421165031576]
建物における省エネルギーと二酸化炭素排出量削減は気候変動対策の鍵となる手段の一つである。
シラーシステムの電力消費の最適化は、機械工学と建築サービス領域で広く研究されてきた。
ビッグデータとAIの進歩により、最適化問題への機械学習の採用が人気を集めている。
論文 参考訳(メタデータ) (2020-10-09T09:51:03Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。