How Can Subgroup Discovery Help AIOps?
- URL: http://arxiv.org/abs/2109.04909v1
- Date: Fri, 10 Sep 2021 14:41:02 GMT
- Title: How Can Subgroup Discovery Help AIOps?
- Authors: Youcef Remil
- Abstract summary: We study how Subgroup Discovery can help AIOps.
This project involves both data mining researchers and practitioners from Infologic, a French software editor.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The genuine supervision of modern IT systems brings new challenges as it
requires higher standards of scalability, reliability and efficiency when
analysing and monitoring big data streams. Rule-based inference engines are a
key component of maintenance systems in detecting anomalies and automating
their resolution. However, they remain confined to simple and general rules and
cannot handle the huge amount of data, nor the large number of alerts raised by
IT systems, a lesson learned from expert systems era. Artificial Intelligence
for Operation Systems (AIOps) proposes to take advantage of advanced analytics
and machine learning on big data to improve and automate every step of
supervision systems and aid incident management in detecting outages,
identifying root causes and applying appropriate healing actions. Nevertheless,
the best AIOps techniques rely on opaque models, strongly limiting their
adoption. As a part of this PhD thesis, we study how Subgroup Discovery can
help AIOps. This promising data mining technique offers possibilities to
extract interesting hypothesis from data and understand the underlying process
behind predictive models. To ensure relevancy of our propositions, this project
involves both data mining researchers and practitioners from Infologic, a
French software editor.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Systematic review, analysis, and characterisation of malicious industrial network traffic datasets for aiding Machine Learning algorithm performance testing [0.0]
This paper systematically reviews publicly available network traffic capture-based datasets.
It includes categorisation of contained attack types, review of metadata, and statistical as well as complexity analysis.
It provides researchers with metadata that can be used to select the best dataset for their research question.
arXiv Detail & Related papers (2024-05-08T07:48:40Z) - AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review [0.29998889086656577]
This study proposes an AIOps terminology and taxonomy, establishing a structured incident management procedure and providing guidelines for constructing an AIOps framework.
The goal is to provide a comprehensive review of technical and research aspects in AIOps for incident management, aiming to structure knowledge, identify gaps, and establish a foundation for future developments in the field.
arXiv Detail & Related papers (2024-04-01T17:32:22Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Leveraging Log Instructions in Log-based Anomaly Detection [0.5949779668853554]
We propose a method for reliable and practical anomaly detection from system logs.
It overcomes the common disadvantage of related works by building an anomaly detection model with log instructions from the source code of 1000+ GitHub projects.
The proposed method, named ADLILog, combines the log instructions and the data from the system of interest (target system) to learn a deep neural network model.
arXiv Detail & Related papers (2022-07-07T10:22:10Z) - LogLAB: Attention-Based Labeling of Log Data Anomalies via Weak
Supervision [63.08516384181491]
We present LogLAB, a novel modeling approach for automated labeling of log messages without requiring manual work by experts.
Our method relies on estimated failure time windows provided by monitoring systems to produce precise labeled datasets in retrospect.
Our evaluation shows that LogLAB consistently outperforms nine benchmark approaches across three different datasets and maintains an F1-score of more than 0.98 even at large failure time windows.
arXiv Detail & Related papers (2021-11-02T15:16:08Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.