SCANNER: Knowledge-Enhanced Approach for Robust Multi-modal Named Entity Recognition of Unseen Entities
- URL: http://arxiv.org/abs/2404.01914v1
- Date: Tue, 2 Apr 2024 13:05:41 GMT
- Title: SCANNER: Knowledge-Enhanced Approach for Robust Multi-modal Named Entity Recognition of Unseen Entities
- Authors: Hyunjong Ok, Taeho Kil, Sukmin Seo, Jaeho Lee,
- Abstract summary: We propose SCANNER, a model capable of effectively handling all three NER variants.
SCANNER is a two-stage structure; we extract entity candidates in the first stage and use it as a query to get knowledge.
To tackle the challenges arising from noisy annotations in NER datasets, we introduce a novel self-distillation method.
- Score: 10.193908215351497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in named entity recognition (NER) have pushed the boundary of the task to incorporate visual signals, leading to many variants, including multi-modal NER (MNER) or grounded MNER (GMNER). A key challenge to these tasks is that the model should be able to generalize to the entities unseen during the training, and should be able to handle the training samples with noisy annotations. To address this obstacle, we propose SCANNER (Span CANdidate detection and recognition for NER), a model capable of effectively handling all three NER variants. SCANNER is a two-stage structure; we extract entity candidates in the first stage and use it as a query to get knowledge, effectively pulling knowledge from various sources. We can boost our performance by utilizing this entity-centric extracted knowledge to address unseen entities. Furthermore, to tackle the challenges arising from noisy annotations in NER datasets, we introduce a novel self-distillation method, enhancing the robustness and accuracy of our model in processing training data with inherent uncertainties. Our approach demonstrates competitive performance on the NER benchmark and surpasses existing methods on both MNER and GMNER benchmarks. Further analysis shows that the proposed distillation and knowledge utilization methods improve the performance of our model on various benchmarks.
Related papers
- In-Context Learning for Few-Shot Nested Named Entity Recognition [53.55310639969833]
We introduce an effective and innovative ICL framework for the setting of few-shot nested NER.
We improve the ICL prompt by devising a novel example demonstration selection mechanism, EnDe retriever.
In EnDe retriever, we employ contrastive learning to perform three types of representation learning, in terms of semantic similarity, boundary similarity, and label similarity.
arXiv Detail & Related papers (2024-02-02T06:57:53Z) - Named Entity Recognition via Machine Reading Comprehension: A Multi-Task
Learning Approach [50.12455129619845]
Named Entity Recognition (NER) aims to extract and classify entity mentions in the text into pre-defined types.
We propose to incorporate the label dependencies among entity types into a multi-task learning framework for better MRC-based NER.
arXiv Detail & Related papers (2023-09-20T03:15:05Z) - ContrastNER: Contrastive-based Prompt Tuning for Few-shot NER [0.6562256987706128]
We present ContrastNER, a prompt-based NER framework that employs both discrete and continuous tokens in prompts and uses a contrastive learning approach to learn the continuous prompts and forecast entity types.
The experimental results demonstrate that ContrastNER obtains competitive performance to the state-of-the-art NER methods in high-resource settings and outperforms the state-of-the-art models in low-resource circumstances without requiring extensive prompt engineering and verbalizer design.
arXiv Detail & Related papers (2023-05-29T08:24:42Z) - E-NER: Evidential Deep Learning for Trustworthy Named Entity Recognition [69.87816981427858]
Most named entity recognition (NER) systems focus on improving model performance, ignoring the need to quantify model uncertainty.
Evidential deep learning (EDL) has recently been proposed as a promising solution to explicitly model predictive uncertainty for classification tasks.
We propose a trustworthy NER framework named E-NER by introducing two uncertainty-guided loss terms to the conventional EDL, along with a series of uncertainty-guided training strategies.
arXiv Detail & Related papers (2023-05-29T02:36:16Z) - Multi-task Transformer with Relation-attention and Type-attention for
Named Entity Recognition [35.44123819012004]
Named entity recognition (NER) is an important research problem in natural language processing.
This paper proposes a multi-task Transformer, which incorporates an entity boundary detection task into the named entity recognition task.
arXiv Detail & Related papers (2023-03-20T05:11:22Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NER model has achieved promising performance on standard NER benchmarks.
Recent studies show that previous approaches may over-rely on entity mention information, resulting in poor performance on out-of-vocabulary (OOV) entity recognition.
We propose MINER, a novel NER learning framework, to remedy this issue from an information-theoretic perspective.
arXiv Detail & Related papers (2022-04-09T05:18:20Z) - Distantly-Supervised Named Entity Recognition with Noise-Robust Learning
and Language Model Augmented Self-Training [66.80558875393565]
We study the problem of training named entity recognition (NER) models using only distantly-labeled data.
We propose a noise-robust learning scheme comprised of a new loss function and a noisy label removal step.
Our method achieves superior performance, outperforming existing distantly-supervised NER models by significant margins.
arXiv Detail & Related papers (2021-09-10T17:19:56Z) - BOND: BERT-Assisted Open-Domain Named Entity Recognition with Distant
Supervision [49.42215511723874]
We propose a new computational framework -- BOND -- to improve the prediction performance of NER models.
Specifically, we propose a two-stage training algorithm: In the first stage, we adapt the pre-trained language model to the NER tasks using the distant labels.
In the second stage, we drop the distant labels, and propose a self-training approach to further improve the model performance.
arXiv Detail & Related papers (2020-06-28T04:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.