論文の概要: Speaker Turn Modeling for Dialogue Act Classification
- arxiv url: http://arxiv.org/abs/2109.05056v1
- Date: Fri, 10 Sep 2021 18:36:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-18 23:00:38.087034
- Title: Speaker Turn Modeling for Dialogue Act Classification
- Title(参考訳): 対話行為分類のための話者ターンモデリング
- Authors: Zihao He, Leili Tavabi, Kristina Lerman, Mohammad Soleymani
- Abstract要約: 本稿では,対話法(DA)分類のモデル化において,話者間の会話の交替変化を統合することを提案する。
会話中の話者ターンを表現するために,会話不変話者ターン埋め込みを学習する。
本モデルでは,対話内容から意味を抽出し,会話中の話者の交替を考慮に入れた。
- 参考スコア(独自算出の注目度): 9.124489616470001
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dialogue Act (DA) classification is the task of classifying utterances with
respect to the function they serve in a dialogue. Existing approaches to DA
classification model utterances without incorporating the turn changes among
speakers throughout the dialogue, therefore treating it no different than
non-interactive written text. In this paper, we propose to integrate the turn
changes in conversations among speakers when modeling DAs. Specifically, we
learn conversation-invariant speaker turn embeddings to represent the speaker
turns in a conversation; the learned speaker turn embeddings are then merged
with the utterance embeddings for the downstream task of DA classification.
With this simple yet effective mechanism, our model is able to capture the
semantics from the dialogue content while accounting for different speaker
turns in a conversation. Validation on three benchmark public datasets
demonstrates superior performance of our model.
- Abstract(参考訳): ダイアログ法(英: Dialogue Act, DA)は、ダイアログにおける機能に関する発話を分類するタスクである。
既存のDA分類モデル発話へのアプローチは、対話を通して話者間の旋回変化を含まないため、非対話的テキストと変わらない。
本稿では,DAをモデル化する際の話者間の会話の変化を統合することを提案する。
具体的には、会話中の話者の順番を表す会話不変話者の順番埋め込みを学習し、学習された話者の順番埋め込みを、da分類の下流タスクのための発話埋め込みとマージする。
このシンプルで効果的なメカニズムにより、対話内容から意味を捉えることができ、会話の中で異なる話者のターンを考慮に入れられる。
3つのベンチマークデータセットの検証は、我々のモデルの優れたパフォーマンスを示しています。
関連論文リスト
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
GPT-4oのようなシステムで実証された音声対話モデルの最近の進歩は、音声領域において大きな注目を集めている。
これらの高度な音声対話モデルは、音声、音楽、その他の音声関連の特徴を理解するだけでなく、音声のスタイリスティックな特徴や音節的な特徴も捉える。
音声対話システムの進歩にもかかわらず、これらのシステムを体系的に組織化し分析する包括的調査が欠如している。
論文 参考訳(メタデータ) (2024-11-15T04:16:45Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
本稿では,話題認識の観点から,マルチターン対話をモデル化することを提案する。
対話文のセグメント化アルゴリズムを用いて、対話文を教師なしの方法でトピック集中フラグメントに分割する。
また,トピックセグメントを処理要素として扱う新しいモデルとして,トピック認識デュアルアテンションマッチング(TADAM)ネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T11:03:55Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
本稿では,対話談話特性を最大限に活用し,対話の絡み合いを高めることを提案する。
我々は,会話の意味的文脈をより良くモデル化するために,リッチな構造的特徴を統合する構造認識フレームワークを開発した。
我々の研究は、より広範なマルチスレッド対話アプリケーションを促進する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-06-06T19:17:47Z) - Exploring Speaker-Related Information in Spoken Language Understanding
for Better Speaker Diarization [7.673971221635779]
多人数会議におけるセマンティックコンテンツから話者関連情報を抽出する手法を提案する。
AISHELL-4とAliMeetingの2つのデータセットを用いた実験により,本手法は音響のみの話者ダイアリゼーションシステムよりも一貫した改善を実現することが示された。
論文 参考訳(メタデータ) (2023-05-22T11:14:19Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
本稿では,PrLMの逐次文脈化を超えて,発話間の包括的相互作用のための合成学習を提案する。
私たちは、モデルが対話ドメインに適応するのを助けるために、ドメイン適応型トレーニング戦略を採用しています。
実験の結果,提案手法は4つの公開ベンチマークデータセットにおいて,強力なPrLMベースラインを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-01-10T13:18:25Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
本研究は、音声タスク指向会話における新しいベンチマークを示す。
マルチドメイン対話状態追跡と知識基底型対話モデルについて検討する。
我々のデータセットは,タスク指向対話システムの音声によるベンチマークを可能にする。
論文 参考訳(メタデータ) (2021-09-28T04:51:04Z) - Enhanced Speaker-aware Multi-party Multi-turn Dialogue Comprehension [43.352833140317486]
マルチパーティ・マルチターン・ダイアログの理解は前例のない課題をもたらす。
既存のほとんどのメソッドは、会話コンテキストをプレーンテキストとして扱う。
マスキングアテンションと異種グラフネットワークを用いた話者認識モデルを提案する。
論文 参考訳(メタデータ) (2021-09-09T07:12:22Z) - Content-Aware Speaker Embeddings for Speaker Diarisation [3.6398652091809987]
コンテンツ認識型話者埋め込み(CASE)アプローチを提案する。
ケースファクターは話者認識から自動音声認識(asr)を導き、話者特性のモデル化に焦点をあてる。
caseは従来の方法に比べて17.8%の相対的な話者誤り率削減を達成した。
論文 参考訳(メタデータ) (2021-02-12T12:02:03Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
マルチターン対話は、2つ以上の異なる話者の役割から複数の発話からなる。
既存の検索に基づくマルチターン対話モデルでは、事前訓練された言語モデル(PrLM)をエンコーダとして、対話を粗く表現する。
本稿では,対話履歴に係わる効果的な発話認識表現と話者認識表現をモデル化することにより,そのようなギャップを埋める新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-09-14T15:07:19Z) - Contextual Dialogue Act Classification for Open-Domain Conversational
Agents [10.576497782941697]
会話におけるユーザ発話の一般的な意図を分類することは、会話エージェントのための自然言語理解(NLU)の重要なステップである。
本稿では,文脈対話行為分類のための簡易かつ効果的な深層学習手法であるCDAC(Contextual Dialogue Act)を提案する。
我々は、人-機械対話における対話行動を予測するために、トランスファーラーニングを用いて人間-機械対話で訓練されたモデルを適用する。
論文 参考訳(メタデータ) (2020-05-28T06:48:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。