論文の概要: Contrastive Quantization with Code Memory for Unsupervised Image
Retrieval
- arxiv url: http://arxiv.org/abs/2109.05205v1
- Date: Sat, 11 Sep 2021 07:16:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-18 15:43:34.666129
- Title: Contrastive Quantization with Code Memory for Unsupervised Image
Retrieval
- Title(参考訳): 教師なし画像検索のためのコードメモリを用いたコントラスト量子化
- Authors: Jinpeng Wang, Ziyun Zeng, Bin Chen, Tao Dai, Shu-Tao Xia
- Abstract要約: コードメモリによるコントラスト量子化(MeCoQ)は、教師なしのディープ量子化の新しいソリューションである。
比較学習により教師なしのバイナリ記述子を学習し、識別的視覚的意味論をよりよく捉えることができる。
MeCoQは、ベンチマークデータセットの実験において最先端のメソッドよりも優れています。
- 参考スコア(独自算出の注目度): 41.23507715687314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The high efficiency in computation and storage makes hashing (including
binary hashing and quantization) a common strategy in large-scale retrieval
systems. To alleviate the reliance on expensive annotations, unsupervised deep
hashing becomes an important research problem. This paper provides a novel
solution to unsupervised deep quantization, namely Contrastive Quantization
with Code Memory (MeCoQ). Different from existing reconstruction-based
strategies, we learn unsupervised binary descriptors by contrastive learning,
which can better capture discriminative visual semantics. Besides, we uncover
that codeword diversity regularization is critical to prevent contrastive
learning-based quantization from model degeneration. Moreover, we introduce a
novel quantization code memory module that boosts contrastive learning with
lower feature drift than conventional feature memories. Extensive experiments
on benchmark datasets show that MeCoQ outperforms state-of-the-art methods.
- Abstract(参考訳): 計算とストレージの効率が高いため、大規模な検索システムではハッシュ処理(バイナリハッシュや量子化を含む)が共通の戦略となっている。
高価なアノテーションへの依存を軽減するため、教師なしのディープハッシュは重要な研究課題となる。
本稿では,教師なしの深部量子化,すなわちコードメモリを用いたコントラスト量子化(MeCoQ)について述べる。
既存の再構築戦略と異なり、比較学習により教師なしのバイナリ記述子を学習し、識別的視覚的意味論をよりよく捉えることができる。
さらに、コードワードの多様性の規則化が、対照的な学習に基づく量子化をモデルデジェネレーションから防ぐために重要であることを明らかにする。
さらに,従来の特徴記憶よりも低い特徴ドリフトでコントラスト学習を促進する新しい量子化コードメモリモジュールを提案する。
ベンチマークデータセットの大規模な実験は、MeCoQが最先端の手法より優れていることを示している。
関連論文リスト
- Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
バイナリコード類似度検出(BCSD)は、脆弱性検出、マルウェア分析、コードの再利用識別など、多くの分野で重要な役割を果たしている。
本稿では,LLVM-IRと高レベルのセマンティック抽象化を利用して,コンパイル差を緩和するIRBinDiffを提案する。
IRBinDiffは1対1の比較と1対多の検索シナリオにおいて,他の主要なBCSD手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-24T09:09:20Z) - Holistic Memory Diversification for Incremental Learning in Growing Graphs [16.483780704430405]
目標は、以前のタスクに対する推論能力を維持しながら、新しいタスクを処理するためにグラフモデルを継続的にトレーニングすることだ。
既存の方法は、通常、メモリの多様性の重要性を無視し、以前のタスクから高品質なメモリを効果的に選択することを制限する。
本稿では,グラフにおける漸進的学習のための包括的メモリ選択・生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-11T16:18:15Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Free Lunch for Efficient Textual Commonsense Integration in Language
Models [20.02647320786556]
類似したコモンセンス記述を持つサンプルを1つのバッチにグループ化し、複数のサンプル間でエンコードされた記述を再利用する。
大規模な実験では、提案したバッチ分割手法が性能を保ちながら計算コストを効果的に削減することを示した。
効率の改善は、大規模なデータセットや、メモリ容量の大きいデバイスでより顕著であり、大規模なアプリケーションに実用性があることを証明している。
論文 参考訳(メタデータ) (2023-05-24T19:14:57Z) - Graph-Collaborated Auto-Encoder Hashing for Multi-view Binary Clustering [11.082316688429641]
マルチビューバイナリクラスタリングのための自動エンコーダに基づくハッシュアルゴリズムを提案する。
具体的には,低ランク制約を用いた多視点親和性グラフ学習モデルを提案する。
また、複数の親和性グラフを協調して協調するエンコーダ・デコーダのパラダイムを設計し、統一されたバイナリコードを効果的に学習する。
論文 参考訳(メタデータ) (2023-01-06T12:43:13Z) - Learning Representations for CSI Adaptive Quantization and Feedback [51.14360605938647]
本稿では,周波数分割二重化システムにおける適応量子化とフィードバックの効率的な手法を提案する。
既存の研究は主に、CSI圧縮のためのオートエンコーダ(AE)ニューラルネットワークの実装に焦点を当てている。
1つはポストトレーニング量子化に基づくもので、もう1つはAEのトレーニング中にコードブックが見つかる方法である。
論文 参考訳(メタデータ) (2022-07-13T08:52:13Z) - Self-supervised asymmetric deep hashing with margin-scalable constraint
for image retrieval [3.611160663701664]
画像検索のためのマージンスケール可能な制約(SADH)アプローチを備えた,新しい自己監視型非対称深ハッシュ法を提案する。
sadhは自己教師付きネットワークを実装し、セマンティック特徴マップに意味情報を保存し、与えられたデータセットのセマンティクスを意味コードマップに格納する。
特徴学習部では、ハミング空間におけるペア関係の高精度な構築とより識別的なハッシュコード表現の両方に、新たなマージンスケータブル制約を用いる。
論文 参考訳(メタデータ) (2020-12-07T16:09:37Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
バイナリ潜在変数を持つ変分自動エンコーダ(VAE)は、文書検索の精度の観点から最先端のパフォーマンスを提供する。
本稿では、クラス内類似度とクラス間類似度に報いるために、個別潜伏型VAEを用いたペアワイズ損失関数を提案する。
この新しいセマンティックハッシュフレームワークは、最先端技術よりも優れたパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-05-21T06:11:33Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
グラフ表現学習は、大規模に高品質な候補探索をサポートすることに多くの注目を集めている。
ユーザ・イテム相互作用ネットワークにおけるオブジェクトの埋め込みベクトルの学習の有効性にもかかわらず、連続的な埋め込み空間におけるユーザの好みを推測する計算コストは膨大である。
連続的かつ離散的なコードとを協調的に学習するための,単純かつ効果的な離散表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-04T06:59:56Z) - Asymmetric Correlation Quantization Hashing for Cross-modal Retrieval [11.988383965639954]
クロスモーダルハッシュ法は異種モダリティ間の類似性検索において広く注目を集めている。
本稿では,ACQH法について述べる。
また,不均一なモダリティデータポイントのプロジェクション行列を学習し,クエリを潜在意味空間内の低次元実数値ベクトルに変換する。
学習された実数値コードワードの連続でデータベースポイントを示すために、粗大な方法で埋め込みを積み重ねた合成量子化を構成する。
論文 参考訳(メタデータ) (2020-01-14T04:53:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。