Fast scrambling dynamics and many-body localization transition in an
all-to-all disordered quantum spin model
- URL: http://arxiv.org/abs/2109.05537v2
- Date: Tue, 19 Jul 2022 09:52:38 GMT
- Title: Fast scrambling dynamics and many-body localization transition in an
all-to-all disordered quantum spin model
- Authors: Shang-Shu Li, Rui-Zhen Huang, and Heng Fan
- Abstract summary: We study the quantum thermalization and information scrambling dynamics of an experimentally realizable quantum spin model.
We identify the thermalization-localization transition by changing the disorder strength.
The scrambling dynamics in the localization phase shows novel behaviors distinct from that of local models.
- Score: 11.98074850168011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the quantum thermalization and information scrambling dynamics of an
experimentally realizable quantum spin model with homogeneous XX-type
all-to-all interactions and random local potentials. We identify the
thermalization-localization transition by changing the disorder strength, under
a proper all-to-all interaction strength. The scrambling dynamics in the
localization phase shows novel behaviors distinct from that of local models.
The operator scrambling grows almost equally fast in both phases. In the
thermal phase, we show there exhibits fast scrambling without appealing to the
semi-classical limit. We also briefly discuss the experimental realization of
the model using superconducting qubit quantum simulators.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Observation of critical phase transition in a generalized
Aubry-Andr\'e-Harper model on a superconducting quantum processor with
tunable couplers [22.968091212322523]
Quantum simulation enables study of many-body systems in non-equilibrium.
We simulate the one-dimensional generalized Aubry-Andr'e-Harper model for three different phases.
We observe the spin transport for initial single- and multi-excitation states in different phases.
arXiv Detail & Related papers (2022-06-27T08:22:19Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Interaction-driven breakdown of dynamical localization in a kicked
quantum gas [0.0]
Quantum interference can terminate energy growth in a continually kicked system, via a single-particle ergodicity-breaking mechanism known as dynamical localization.
We report the experimental realization of a tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed optical lattice.
Results quantitatively elucidate the dynamical transition to many-body quantum chaos, advance our understanding of quantum anomalous diffusion, and delimit some possibilities for protecting quantum information in interacting systems.
arXiv Detail & Related papers (2021-06-17T17:52:55Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z) - Minimal Model for Fast Scrambling [0.0]
We study quantum information scrambling in spin models with both long-range all-to-all and short-range interactions.
We argue that a simple global, spatially homogeneous interaction together with local chaotic dynamics is sufficient to give rise to fast scrambling.
arXiv Detail & Related papers (2020-05-11T18:11:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.