論文の概要: Levenshtein Training for Word-level Quality Estimation
- arxiv url: http://arxiv.org/abs/2109.05611v1
- Date: Sun, 12 Sep 2021 20:45:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-14 15:47:41.925274
- Title: Levenshtein Training for Word-level Quality Estimation
- Title(参考訳): 単語レベルの品質評価のためのレベンシュテイントレーニング
- Authors: Shuoyang Ding, Marcin Junczys-Dowmunt, Matt Post, Philipp Koehn
- Abstract要約: Levenshtein TransformerはワードレベルのQEタスクに自然に適合する。
Levenshtein Transformerは、明示的な監督なしに後編集を学ぶことができる。
- 参考スコア(独自算出の注目度): 15.119782800097711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel scheme to use the Levenshtein Transformer to perform the
task of word-level quality estimation. A Levenshtein Transformer is a natural
fit for this task: trained to perform decoding in an iterative manner, a
Levenshtein Transformer can learn to post-edit without explicit supervision. To
further minimize the mismatch between the translation task and the word-level
QE task, we propose a two-stage transfer learning procedure on both augmented
data and human post-editing data. We also propose heuristics to construct
reference labels that are compatible with subword-level finetuning and
inference. Results on WMT 2020 QE shared task dataset show that our proposed
method has superior data efficiency under the data-constrained setting and
competitive performance under the unconstrained setting.
- Abstract(参考訳): 本稿では,単語レベルの品質推定を行うためにLevenshtein Transformerを使用する新しい手法を提案する。
Levenshtein Transformerは、反復的な方法でデコードを実行するように訓練され、Levenshtein Transformerは明示的な監督なしに後処理を学ぶことができる。
翻訳タスクと単語レベルのQEタスクのミスマッチをさらに最小化するために,拡張データと人間の後編集データの両方に対する2段階のトランスファー学習手順を提案する。
また,サブワードレベルの微調整や推論と互換性のある参照ラベルを構築するためのヒューリスティックスを提案する。
WMT 2020 QE共有タスクデータセットの結果,提案手法はデータ制約条件下でのデータ効率と非制約条件下での競合性能に優れていた。
関連論文リスト
- AAdaM at SemEval-2024 Task 1: Augmentation and Adaptation for Multilingual Semantic Textual Relatedness [16.896143197472114]
本稿では,アフリカとアジアの言語に対するセマンティックテキスト関連性(SemEval-2024 Task 1: Semantic Textual Relatedness)について述べる。
本稿では,限られたトレーニングデータの低リソース化問題に対処するために,機械翻訳によるデータ拡張を提案する。
我々のシステムは、サブタスクA(教師付き学習)とサブタスクC(言語間の移動)の両方において、すべてのチームの中で最善を尽くします。
論文 参考訳(メタデータ) (2024-04-01T21:21:15Z) - Unify word-level and span-level tasks: NJUNLP's Participation for the
WMT2023 Quality Estimation Shared Task [59.46906545506715]
我々は、WMT 2023 Quality Estimation (QE)共有タスクにNJUNLPチームを紹介する。
私たちのチームは2つのサブタスクすべてで英語とドイツ語のペアの予測を提出しました。
我々のモデルは、単語レベルと細粒度エラースパン検出サブタスクの両方において、英語とドイツ語で最高の結果を得た。
論文 参考訳(メタデータ) (2023-09-23T01:52:14Z) - Curricular Transfer Learning for Sentence Encoded Tasks [0.0]
本稿では「データハッキング」と文法解析によって導かれる事前学習の手順を提案する。
実験では,MultiWoZタスクの事前学習手法と比較して,提案手法からかなりの改善が得られた。
論文 参考訳(メタデータ) (2023-08-03T16:18:19Z) - Reducing Sequence Length by Predicting Edit Operations with Large
Language Models [50.66922361766939]
本稿では,ローカルなシーケンス変換タスクに対して,ソーステキストの編集スパンを予測することを提案する。
編集スパンの監督データに大規模言語モデルに対する命令チューニングを適用する。
実験の結果,提案手法は4つのタスクにおいて,ベースラインに匹敵する性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-05-19T17:51:05Z) - Paragraph-based Transformer Pre-training for Multi-Sentence Inference [99.59693674455582]
マルチ候補推論タスクの微調整に使用する場合,一般的な事前学習型トランスフォーマーは性能が良くないことを示す。
次に、複数の入力文にまたがる段落レベルの意味をモデル化する新しい事前学習目標を提案する。
論文 参考訳(メタデータ) (2022-05-02T21:41:14Z) - Towards a Unified Foundation Model: Jointly Pre-Training Transformers on
Unpaired Images and Text [93.11954811297652]
我々は、モダリティ固有のトークン化器、共有トランスフォーマーエンコーダ、タスク固有の出力ヘッドからなる統一型トランスフォーマーを設計する。
我々は、個別に訓練されたBERTモデルとViTモデルを教師として採用し、知識蒸留を適用して、より正確な監視信号を提供する。
実験の結果、統合基盤変換器は視覚のみのタスクとテキストのみのタスクの両方で驚くほどうまく機能することがわかった。
論文 参考訳(メタデータ) (2021-12-14T00:20:55Z) - Back-Translated Task Adaptive Pretraining: Improving Accuracy and
Robustness on Text Classification [5.420446976940825]
本稿では, LM再学習のためのタスク固有データ量を増加させるBT-TAPT法を提案する。
実験結果から,BT-TAPTは従来の適応型事前学習法よりも低リソースデータと高リソースデータの両方の分類精度が向上し,ノイズに対する堅牢性が向上することがわかった。
論文 参考訳(メタデータ) (2021-07-22T06:27:35Z) - Verdi: Quality Estimation and Error Detection for Bilingual [23.485380293716272]
Verdiはバイリンガルコーパスのための単語レベルおよび文レベルの後編集作業推定のための新しいフレームワークである。
バイリンガルコーパスの対称性を活用し,NMT予測器にモデルレベル二重学習を適用した。
我々の手法は競争の勝者を圧倒し、他の基準法よりも大きなマージンで上回る。
論文 参考訳(メタデータ) (2021-05-31T11:04:13Z) - Zero-shot Learning by Generating Task-specific Adapters [38.452434222367515]
タスク記述からタスク固有のアダプタを生成するためのハイパーネットワークをトレーニングすることで、ゼロショット転送性を改善するフレームワークであるHypterを紹介する。
この定式化はタスクレベルでの学習を可能にし、軽量アダプタを使用することでパラメータの数を大幅に削減する。
論文 参考訳(メタデータ) (2021-01-02T10:50:23Z) - Contextual Text Style Transfer [73.66285813595616]
コンテキストテキストスタイル転送は、文をその周囲のコンテキストを考慮した所望のスタイルに変換することを目的としている。
本稿では,各入力文とその周辺コンテキストに対して2つの異なるエンコーダを使用するコンテキスト認識スタイル転送(CAST)モデルを提案する。
Enron-ContextとReddit-Contextという2つの新しいベンチマークが、フォーマル性と攻撃性スタイルの転送のために導入された。
論文 参考訳(メタデータ) (2020-04-30T23:01:12Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。