Differential Diagnosis of Frontotemporal Dementia and Alzheimer's
Disease using Generative Adversarial Network
- URL: http://arxiv.org/abs/2109.05627v1
- Date: Sun, 12 Sep 2021 22:40:50 GMT
- Title: Differential Diagnosis of Frontotemporal Dementia and Alzheimer's
Disease using Generative Adversarial Network
- Authors: Ma Da and Lu Donghuan and Popuri Karteek and Beg Mirza Faisal
- Abstract summary: Frontotemporal dementia and Alzheimer's disease are two common forms of dementia and are easily misdiagnosed as each other.
Differentiating between the two dementia types is crucial for determining disease-specific intervention and treatment.
Recent development of Deep-learning-based approaches in the field of medical image computing are delivering some of the best performance for many binary classification tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Frontotemporal dementia and Alzheimer's disease are two common forms of
dementia and are easily misdiagnosed as each other due to their similar pattern
of clinical symptoms. Differentiating between the two dementia types is crucial
for determining disease-specific intervention and treatment. Recent development
of Deep-learning-based approaches in the field of medical image computing are
delivering some of the best performance for many binary classification tasks,
although its application in differential diagnosis, such as neuroimage-based
differentiation for multiple types of dementia, has not been explored. In this
study, a novel framework was proposed by using the Generative Adversarial
Network technique to distinguish FTD, AD and normal control subjects, using
volumetric features extracted at coarse-to-fine structural scales from Magnetic
Resonance Imaging scans. Experiments of 10-folds cross-validation on 1,954
images achieved high accuracy. With the proposed framework, we have
demonstrated that the combination of multi-scale structural features and
synthetic data augmentation based on generative adversarial network can improve
the performance of challenging tasks such as differentiating Dementia
sub-types.
Related papers
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Deep grading for MRI-based differential diagnosis of Alzheimer's disease
and Frontotemporal dementia [0.0]
Alzheimer's disease and Frontotemporal dementia are common forms of neurodegenerative dementia.
Current structural imaging methods mainly focus on the detection of each disease but rarely on their differential diagnosis.
We propose a deep learning based approach for both problems of disease detection and differential diagnosis.
arXiv Detail & Related papers (2022-11-25T13:25:18Z) - Tensor-Based Multi-Modality Feature Selection and Regression for
Alzheimer's Disease Diagnosis [25.958167380664083]
We propose a novel tensor-based multi-modality feature selection and regression method for diagnosis and biomarker identification of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI)
We present the practical advantages of our method for the analysis of ADNI data using three imaging modalities.
arXiv Detail & Related papers (2022-09-23T02:17:27Z) - Interpretable differential diagnosis for Alzheimer's disease and
Frontotemporal dementia [0.0]
Alzheimer's disease and Frontotemporal dementia are two major types of dementia.
differential diagnosis of these two types of dementia remains difficult at the early stage of disease due to similar patterns of clinical symptoms.
Recent development of deep learning in the field of medical image has demonstrated high performance for various classification tasks.
arXiv Detail & Related papers (2022-06-15T09:44:30Z) - A Prior Guided Adversarial Representation Learning and Hypergraph
Perceptual Network for Predicting Abnormal Connections of Alzheimer's Disease [29.30199956567813]
Alzheimer's disease is characterized by alterations of the brain's structural and functional connectivity.
PGARL-HPN is proposed to predict abnormal brain connections using triple-modality medical images.
arXiv Detail & Related papers (2021-10-12T03:10:37Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Multimodal Gait Recognition for Neurodegenerative Diseases [38.06704951209703]
We propose a novel hybrid model to learn the gait differences between three neurodegenerative diseases.
A new correlative memory neural network architecture is designed for extracting temporal features.
Compared with several state-of-the-art techniques, our proposed framework shows more accurate classification results.
arXiv Detail & Related papers (2021-01-07T10:17:11Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.