Tensor-Based Multi-Modality Feature Selection and Regression for
Alzheimer's Disease Diagnosis
- URL: http://arxiv.org/abs/2209.11372v1
- Date: Fri, 23 Sep 2022 02:17:27 GMT
- Title: Tensor-Based Multi-Modality Feature Selection and Regression for
Alzheimer's Disease Diagnosis
- Authors: Jun Yu, Zhaoming Kong, Liang Zhan, Li Shen, and Lifang He
- Abstract summary: We propose a novel tensor-based multi-modality feature selection and regression method for diagnosis and biomarker identification of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI)
We present the practical advantages of our method for the analysis of ADNI data using three imaging modalities.
- Score: 25.958167380664083
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The assessment of Alzheimer's Disease (AD) and Mild Cognitive Impairment
(MCI) associated with brain changes remains a challenging task. Recent studies
have demonstrated that combination of multi-modality imaging techniques can
better reflect pathological characteristics and contribute to more accurate
diagnosis of AD and MCI. In this paper, we propose a novel tensor-based
multi-modality feature selection and regression method for diagnosis and
biomarker identification of AD and MCI from normal controls. Specifically, we
leverage the tensor structure to exploit high-level correlation information
inherent in the multi-modality data, and investigate tensor-level sparsity in
the multilinear regression model. We present the practical advantages of our
method for the analysis of ADNI data using three imaging modalities (VBM- MRI,
FDG-PET and AV45-PET) with clinical parameters of disease severity and
cognitive scores. The experimental results demonstrate the superior performance
of our proposed method against the state-of-the-art for the disease diagnosis
and the identification of disease-specific regions and modality-related
differences. The code for this work is publicly available at
https://github.com/junfish/BIOS22.
Related papers
- Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Multimodal Identification of Alzheimer's Disease: A Review [4.6358128931887705]
Alzheimer's disease is a progressive neurological disorder characterized by cognitive impairment and memory loss.
In recent years, a considerable number of teams have applied computer-aided diagnostic techniques to early classification research of AD.
arXiv Detail & Related papers (2023-10-06T12:48:15Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Multimodal Attention-based Deep Learning for Alzheimer's Disease
Diagnosis [9.135911493822261]
Alzheimer's Disease (AD) is the most common neurodegenerative disorder with one of the most complex pathogeneses.
We present a Multimodal Alzheimer's Disease Diagnosis framework (MADDi) to accurately detect the presence of AD.
arXiv Detail & Related papers (2022-06-17T15:10:00Z) - Interpretable Graph Convolutional Network of Multi-Modality Brain
Imaging for Alzheimer's Disease Diagnosis [14.894215698742924]
We propose an interpretable Graph Convolutional Network framework for the identification and classification of Alzheimer's disease.
We usedGrad-CAM technique to quantify the most discriminative features identified by GCN from brain connectivity patterns.
arXiv Detail & Related papers (2022-04-27T20:43:11Z) - Differential Diagnosis of Frontotemporal Dementia and Alzheimer's
Disease using Generative Adversarial Network [0.0]
Frontotemporal dementia and Alzheimer's disease are two common forms of dementia and are easily misdiagnosed as each other.
Differentiating between the two dementia types is crucial for determining disease-specific intervention and treatment.
Recent development of Deep-learning-based approaches in the field of medical image computing are delivering some of the best performance for many binary classification tasks.
arXiv Detail & Related papers (2021-09-12T22:40:50Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Multimodal Gait Recognition for Neurodegenerative Diseases [38.06704951209703]
We propose a novel hybrid model to learn the gait differences between three neurodegenerative diseases.
A new correlative memory neural network architecture is designed for extracting temporal features.
Compared with several state-of-the-art techniques, our proposed framework shows more accurate classification results.
arXiv Detail & Related papers (2021-01-07T10:17:11Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.