論文の概要: Real-Time EMG Signal Classification via Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2109.05674v1
- Date: Mon, 13 Sep 2021 02:36:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-14 15:53:37.954022
- Title: Real-Time EMG Signal Classification via Recurrent Neural Networks
- Title(参考訳): リカレントニューラルネットワークによるリアルタイムemg信号分類
- Authors: Reza Bagherian Azhiri, Mohammad Esmaeili, Mehrdad Nourani
- Abstract要約: ニューラルネットワークに基づく一連のアーキテクチャを用いて、分類精度を高め、予測遅延時間を短縮する。
これらのアーキテクチャの性能は比較され、一般に600msecで96%の分類精度を達成し、他の最先端手法よりも優れている。
- 参考スコア(独自算出の注目度): 2.66418345185993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time classification of Electromyography signals is the most challenging
part of controlling a prosthetic hand. Achieving a high classification accuracy
of EMG signals in a short delay time is still challenging. Recurrent neural
networks (RNNs) are artificial neural network architectures that are
appropriate for sequential data such as EMG. In this paper, after extracting
features from a hybrid time-frequency domain (discrete Wavelet transform), we
utilize a set of recurrent neural network-based architectures to increase the
classification accuracy and reduce the prediction delay time. The performances
of these architectures are compared and in general outperform other
state-of-the-art methods by achieving 96% classification accuracy in 600 msec.
- Abstract(参考訳): 筋電図信号のリアルタイム分類は義手を制御する上で最も難しい部分である。
短い遅延時間でEMG信号の高い分類精度を達成することは依然として困難である。
リカレントニューラルネットワーク(Recurrent Neural Network, RNN)は、EMGなどのシーケンシャルデータに適したニューラルネットワークアーキテクチャである。
本稿では,ハイブリッドな時間周波数領域(離散ウェーブレット変換)から特徴を抽出した後,再帰的ニューラルネットワークアーキテクチャ群を用いて分類精度を高め,予測遅延時間を短縮する。
これらのアーキテクチャの性能は比較され、一般に600msecで96%の分類精度を達成し、他の最先端手法よりも優れている。
関連論文リスト
- Hyperspectral Image Classification Based on Faster Residual Multi-branch Spiking Neural Network [6.166929138912052]
本稿では,HSI分類タスクのための漏洩統合火災ニューロンモデルに基づくスパイキングニューラルネットワーク(SNN)を構築する。
SNN-SWMRでは、タイムステップの約84%、トレーニング時間、テストタイムの約63%と70%を同じ精度で削減する必要がある。
論文 参考訳(メタデータ) (2024-09-18T00:51:01Z) - Hybridization of Persistent Homology with Neural Networks for Time-Series Prediction: A Case Study in Wave Height [0.0]
本稿では,ニューラルネットワークモデルの予測性能を向上させる機能工学手法を提案する。
具体的には、計算トポロジ手法を利用して、入力データから貴重なトポロジ的特徴を導出する。
タイムアヘッド予測では、FNN、RNN、LSTM、GRUモデルにおいて、R2$スコアの強化が重要だった。
論文 参考訳(メタデータ) (2024-09-03T01:26:21Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
不整脈分類のための拡張CNN (HARDC) 法を用いたハイブリッド階層型双方向リカレントニューラルネットワークを開発した。
提案したHARDCは、拡張CNNと双方向リカレントニューラルネットワークユニット(BiGRU-BiLSTM)アーキテクチャをフル活用して、融合機能を生成する。
以上の結果から,複数種類の不整脈信号の分類を自動化し,高度に計算した手法が有望であることが示唆された。
論文 参考訳(メタデータ) (2023-03-06T13:26:29Z) - Motor Imagery Classification based on CNN-GRU Network with
Spatio-Temporal Feature Representation [22.488536453952964]
近年、脳波(EEG)信号に様々なディープニューラルネットワークが応用されている。
脳波は非侵襲的に取得できる脳信号であり、時間分解能が高い。
脳波信号は高次元の分類特徴空間を持つため,性能向上には適切な特徴抽出法が必要である。
論文 参考訳(メタデータ) (2021-07-15T01:05:38Z) - Classification of Motor Imagery EEG Signals by Using a Divergence Based
Convolutional Neural Network [0.0]
増強過程はEEG信号の分類性能を高めるために適用されないことが観察される。
本研究では、MI EEG信号の分類性能に及ぼす増強過程の影響について検討した。
論文 参考訳(メタデータ) (2021-03-19T18:27:28Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks [61.76338096980383]
TDNN(State-of-the-the-art Factored Time delay Neural Network)の2種類のハイパーパラメータを自動的に学習するために、さまざまなニューラルネットワークサーチ(NAS)技術が使用されている。
DARTSメソッドはアーキテクチャ選択とLF-MMI(格子のないMMI)TDNNトレーニングを統合する。
300時間のSwitchboardコーパスで行われた実験では、自動構成システムはベースラインLF-MMI TDNNシステムより一貫して優れていることが示唆された。
論文 参考訳(メタデータ) (2020-07-17T08:32:11Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。