論文の概要: Efficient Memristive Spiking Neural Networks Architecture with Supervised In-Situ STDP Method
- arxiv url: http://arxiv.org/abs/2507.20998v1
- Date: Mon, 28 Jul 2025 17:09:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:58.220154
- Title: Efficient Memristive Spiking Neural Networks Architecture with Supervised In-Situ STDP Method
- Title(参考訳): その場STDP法を用いた効率よい旋律スパイクニューラルネットワークアーキテクチャ
- Authors: Santlal Prajapati, Susmita Sur-Kolay, Soumyadeep Dutta,
- Abstract要約: 時間的スパイクエンコーディングを備えたメムリスタベースのスパイキングニューラルネットワーク(SNN)は、超低エネルギー計算を可能にする。
本稿では,新しい教師付きin-situ学習アルゴリズムを用いて学習した回路レベルのメムリシブスパイクニューラルネットワーク(SNN)アーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Memristor-based Spiking Neural Networks (SNNs) with temporal spike encoding enable ultra-low-energy computation, making them ideal for battery-powered intelligent devices. This paper presents a circuit-level memristive spiking neural network (SNN) architecture trained using a proposed novel supervised in-situ learning algorithm inspired by spike-timing-dependent plasticity (STDP). The proposed architecture efficiently implements lateral inhibition and the refractory period, eliminating the need for external microcontrollers or ancillary control hardware. All synapses of the winning neurons are updated in parallel, enhancing training efficiency. The modular design ensures scalability with respect to input data dimensions and output class count. The SNN is evaluated in LTspice for pattern recognition (using 5x3 binary images) and classification tasks using the Iris and Breast Cancer Wisconsin (BCW) datasets. During testing, the system achieved perfect pattern recognition and high classification accuracies of 99.11\% (Iris) and 97.9\% (BCW). Additionally, it has demonstrated robustness, maintaining an average recognition rate of 93.4\% under 20\% input noise. The impact of stuck-at-conductance faults and memristor device variations was also analyzed.
- Abstract(参考訳): 時間スパイクエンコーディングを備えたMemristorベースのスパイキングニューラルネットワーク(SNN)は、超低エネルギー計算を可能にし、バッテリ駆動のインテリジェントデバイスに最適である。
本稿では,スパイク刺激依存型プラスティック性(STDP)に触発された新しい教師付きその場学習アルゴリズムを用いて,回路レベルの間欠的スパイクニューラルネットワーク(SNN)アーキテクチャを訓練した。
提案アーキテクチャは、外部マイクロコントローラや補助制御ハードウェアの必要性をなくし、横方向の抑制と屈折周期を効果的に実装する。
勝利したニューロンのシナプスはすべて並列に更新され、訓練効率が向上する。
モジュール設計は、入力データ次元と出力クラスカウントに関するスケーラビリティを保証する。
SNNは、パターン認識(5x3バイナリイメージ)とIris and Breast Cancer Wisconsin(BCW)データセットを用いた分類タスクのためにLTspiceで評価されている。
テスト中、システムは完璧なパターン認識と99.11\%(アイリス)と97.9\%(BCW)の高い分類精度を達成した。
さらにロバスト性を示し、平均認識率93.4\%を20\%の入力雑音下で維持している。
また, インダクタンス・アット・コンダクタンス断層とメムリスタ・デバイス変動の影響を解析した。
関連論文リスト
- Neuromorphic Wireless Split Computing with Resonate-and-Fire Neurons [69.73249913506042]
本稿では、共振器(RF)ニューロンを用いて時間領域信号を直接処理する無線スプリットコンピューティングアーキテクチャについて検討する。
可変周波数で共鳴することにより、RFニューロンは低スパイク活性を維持しながら時間局在スペクトル特徴を抽出する。
実験の結果,提案したRF-SNNアーキテクチャは従来のLIF-SNNやANNと同等の精度を達成できることがわかった。
論文 参考訳(メタデータ) (2025-06-24T21:14:59Z) - Event-Driven Implementation of a Physical Reservoir Computing Framework for superficial EMG-based Gesture Recognition [2.222098162797332]
本稿では,表面筋電図(SEMG)データをイベント駆動方式で抽出することで,ジェスチャー認識のための新しいニューロモーフィックな実装手法を提案する。
このネットワークは、スパイキングニューラルネットワーク(SNN)の領域内で、回転ニューロン貯水池(Rotating Neuron Reservoir, RNR)と呼ばれる単純な構造化およびハードウェアフレンドリな物理貯留層コンピューティングフレームワークを実装して設計された。
提案システムはオープンアクセス型大規模sEMGデータベースで検証され,平均分類精度は74.6%,80.3%であった。
論文 参考訳(メタデータ) (2025-03-10T17:18:14Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Neuromorphic Circuit Simulation with Memristors: Design and Evaluation Using MemTorch for MNIST and CIFAR [0.4077787659104315]
本研究は,3つのデジタル畳み込みニューラルネットワークを構築し,訓練することにより,メモリ内処理にmemristorsを用いることの可能性を評価する。
これらのネットワークをmemtorchシステムに変換する。
シミュレーションは理想的な条件下で行われ、推論中に最小1%の精度の損失が得られた。
論文 参考訳(メタデータ) (2024-07-18T11:30:33Z) - Evaluating Spiking Neural Network On Neuromorphic Platform For Human
Activity Recognition [2.710807780228189]
エネルギー効率と低レイテンシは、ウェアラブルAIを活用した人間の活動認識システムにとって重要な要件である。
スパイクベースのワークアウト認識システムは、従来のニューラルネットワークを備えた一般的なミリワットRISC-VベースマルチコアプロセッサGAP8に匹敵する精度を達成することができる。
論文 参考訳(メタデータ) (2023-08-01T18:59:06Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - An optimised deep spiking neural network architecture without gradients [7.183775638408429]
本稿では、局所シナプスおよびしきい値適応ルールを用いたエンドツーエンドのトレーニング可能なモジュラーイベント駆動ニューラルアーキテクチャを提案する。
このアーキテクチャは、既存のスパイキングニューラルネットワーク(SNN)アーキテクチャの高度に抽象化されたモデルを表している。
論文 参考訳(メタデータ) (2021-09-27T05:59:12Z) - Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks [61.76338096980383]
TDNN(State-of-the-the-art Factored Time delay Neural Network)の2種類のハイパーパラメータを自動的に学習するために、さまざまなニューラルネットワークサーチ(NAS)技術が使用されている。
DARTSメソッドはアーキテクチャ選択とLF-MMI(格子のないMMI)TDNNトレーニングを統合する。
300時間のSwitchboardコーパスで行われた実験では、自動構成システムはベースラインLF-MMI TDNNシステムより一貫して優れていることが示唆された。
論文 参考訳(メタデータ) (2020-07-17T08:32:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。