NeuTral Rewriter: A Rule-Based and Neural Approach to Automatic
Rewriting into Gender-Neutral Alternatives
- URL: http://arxiv.org/abs/2109.06105v1
- Date: Mon, 13 Sep 2021 16:26:12 GMT
- Title: NeuTral Rewriter: A Rule-Based and Neural Approach to Automatic
Rewriting into Gender-Neutral Alternatives
- Authors: Eva Vanmassenhove, Chris Emmery and Dimitar Shterionov
- Abstract summary: We present a rule-based and a neural approach to gender-neutral rewriting for English.
A detailed manual and automatic evaluation highlights how our NeuTral Rewriter, trained on data generated by the rule-based approach, obtains word error rates (WER) below 0.18%.
- Score: 2.3204178451683264
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent years have seen an increasing need for gender-neutral and inclusive
language. Within the field of NLP, there are various mono- and bilingual use
cases where gender inclusive language is appropriate, if not preferred due to
ambiguity or uncertainty in terms of the gender of referents. In this work, we
present a rule-based and a neural approach to gender-neutral rewriting for
English along with manually curated synthetic data (WinoBias+) and natural data
(OpenSubtitles and Reddit) benchmarks. A detailed manual and automatic
evaluation highlights how our NeuTral Rewriter, trained on data generated by
the rule-based approach, obtains word error rates (WER) below 0.18% on
synthetic, in-domain and out-domain test sets.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation
with the GeNTE Corpus [15.388894407006852]
Machine translation (MT) often defaults to masculine and stereotypical representations by making undue binary gender assumptions.
Our work addresses the rising demand for inclusive language by focusing head-on on gender-neutral translation from English to Italian.
arXiv Detail & Related papers (2023-10-08T21:44:00Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - "I'm fully who I am": Towards Centering Transgender and Non-Binary
Voices to Measure Biases in Open Language Generation [69.25368160338043]
Transgender and non-binary (TGNB) individuals disproportionately experience discrimination and exclusion from daily life.
We assess how the social reality surrounding experienced marginalization of TGNB persons contributes to and persists within Open Language Generation.
We introduce TANGO, a dataset of template-based real-world text curated from a TGNB-oriented community.
arXiv Detail & Related papers (2023-05-17T04:21:45Z) - Social Biases in Automatic Evaluation Metrics for NLG [53.76118154594404]
We propose an evaluation method based on Word Embeddings Association Test (WEAT) and Sentence Embeddings Association Test (SEAT) to quantify social biases in evaluation metrics.
We construct gender-swapped meta-evaluation datasets to explore the potential impact of gender bias in image caption and text summarization tasks.
arXiv Detail & Related papers (2022-10-17T08:55:26Z) - User-Centric Gender Rewriting [12.519348416773553]
We define the task of gender rewriting in contexts involving two users (I and/or You)
We develop a multi-step system that combines the positive aspects of both rule-based and neural rewriting models.
Our results successfully demonstrate the viability of this approach on a recently created corpus for Arabic gender rewriting.
arXiv Detail & Related papers (2022-05-04T17:46:17Z) - Generating Gender Augmented Data for NLP [3.5557219875516655]
Gender bias is a frequent occurrence in NLP-based applications, especially in gender-inflected languages.
This paper proposes an automatic and generalisable rewriting approach for short conversational sentences.
The proposed approach is based on a neural machine translation (NMT) system trained to 'translate' from one gender alternative to another.
arXiv Detail & Related papers (2021-07-13T11:13:21Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
We perform a case study on the singular they, a common way to promote gender inclusion in English.
We show how a model can be trained to produce gender-neutral English with 1% word error rate with no human-labeled data.
arXiv Detail & Related papers (2021-02-12T21:47:48Z) - Neural Machine Translation Doesn't Translate Gender Coreference Right
Unless You Make It [18.148675498274866]
We propose schemes for incorporating explicit word-level gender inflection tags into Neural Machine Translation.
We find that simple existing approaches can over-generalize a gender-feature to multiple entities in a sentence.
We also propose an extension to assess translations of gender-neutral entities from English given a corresponding linguistic convention.
arXiv Detail & Related papers (2020-10-11T20:05:42Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z) - Reducing Gender Bias in Neural Machine Translation as a Domain
Adaptation Problem [21.44025591721678]
Training data for NLP tasks often exhibits gender bias in that fewer sentences refer to women than to men.
Recent WinoMT challenge set allows us to measure this effect directly.
We use transfer learning on a small set of trusted, gender-balanced examples.
arXiv Detail & Related papers (2020-04-09T11:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.