"I'm fully who I am": Towards Centering Transgender and Non-Binary
Voices to Measure Biases in Open Language Generation
- URL: http://arxiv.org/abs/2305.09941v4
- Date: Thu, 1 Jun 2023 20:42:13 GMT
- Title: "I'm fully who I am": Towards Centering Transgender and Non-Binary
Voices to Measure Biases in Open Language Generation
- Authors: Anaelia Ovalle, Palash Goyal, Jwala Dhamala, Zachary Jaggers, Kai-Wei
Chang, Aram Galstyan, Richard Zemel, Rahul Gupta
- Abstract summary: Transgender and non-binary (TGNB) individuals disproportionately experience discrimination and exclusion from daily life.
We assess how the social reality surrounding experienced marginalization of TGNB persons contributes to and persists within Open Language Generation.
We introduce TANGO, a dataset of template-based real-world text curated from a TGNB-oriented community.
- Score: 69.25368160338043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transgender and non-binary (TGNB) individuals disproportionately experience
discrimination and exclusion from daily life. Given the recent popularity and
adoption of language generation technologies, the potential to further
marginalize this population only grows. Although a multitude of NLP fairness
literature focuses on illuminating and addressing gender biases, assessing
gender harms for TGNB identities requires understanding how such identities
uniquely interact with societal gender norms and how they differ from gender
binary-centric perspectives. Such measurement frameworks inherently require
centering TGNB voices to help guide the alignment between gender-inclusive NLP
and whom they are intended to serve. Towards this goal, we ground our work in
the TGNB community and existing interdisciplinary literature to assess how the
social reality surrounding experienced marginalization of TGNB persons
contributes to and persists within Open Language Generation (OLG). This social
knowledge serves as a guide for evaluating popular large language models (LLMs)
on two key aspects: (1) misgendering and (2) harmful responses to gender
disclosure. To do this, we introduce TANGO, a dataset of template-based
real-world text curated from a TGNB-oriented community. We discover a dominance
of binary gender norms reflected by the models; LLMs least misgendered subjects
in generated text when triggered by prompts whose subjects used binary
pronouns. Meanwhile, misgendering was most prevalent when triggering generation
with singular they and neopronouns. When prompted with gender disclosures, TGNB
disclosure generated the most stigmatizing language and scored most toxic, on
average. Our findings warrant further research on how TGNB harms manifest in
LLMs and serve as a broader case study toward concretely grounding the design
of gender-inclusive AI in community voices and interdisciplinary literature.
Related papers
- The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
We center transgender, nonbinary, and other gender-diverse identities to investigate how alignment procedures interact with pre-existing gender-diverse bias.
Our findings reveal that DPO-aligned models are particularly sensitive to supervised finetuning.
We conclude with recommendations tailored to DPO and broader alignment practices.
arXiv Detail & Related papers (2024-11-06T06:50:50Z) - GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
Large language models (LLMs) have exhibited remarkable capabilities in natural language generation, but have also been observed to magnify societal biases.
GenderCARE is a comprehensive framework that encompasses innovative Criteria, bias Assessment, Reduction techniques, and Evaluation metrics.
arXiv Detail & Related papers (2024-08-22T15:35:46Z) - Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - Harmful Speech Detection by Language Models Exhibits Gender-Queer Dialect Bias [8.168722337906148]
This study investigates the presence of bias in harmful speech classification of gender-queer dialect online.
We introduce a novel dataset, QueerLex, based on 109 curated templates exemplifying non-derogatory uses of LGBTQ+ slurs.
We systematically evaluate the performance of five off-the-shelf language models in assessing the harm of these texts.
arXiv Detail & Related papers (2024-05-23T18:07:28Z) - ''Fifty Shades of Bias'': Normative Ratings of Gender Bias in GPT
Generated English Text [11.085070600065801]
Language serves as a powerful tool for the manifestation of societal belief systems.
Gender bias is one of the most pervasive biases in our society.
We create the first dataset of GPT-generated English text with normative ratings of gender bias.
arXiv Detail & Related papers (2023-10-26T14:34:06Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
We investigate how seniority impacts the degree of gender bias exhibited in pretrained neural generation models.
Our results show that GPT-2 amplifies bias by considering women as junior and men as senior more often than the ground truth in both domains.
These results suggest that NLP applications built using GPT-2 may harm women in professional capacities.
arXiv Detail & Related papers (2022-05-19T20:05:02Z) - Theories of "Gender" in NLP Bias Research [0.0]
We survey nearly 200 articles concerning gender bias in NLP.
We find that the majority of the articles do not make their theorization of gender explicit.
Many conflate sex characteristics, social gender, and linguistic gender in ways that disregard the existence and experience of trans, nonbinary, and intersex people.
arXiv Detail & Related papers (2022-05-05T09:20:53Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.