Optimizing Active Learning in Vision-Language Models via Parameter-Efficient Uncertainty Calibration
- URL: http://arxiv.org/abs/2507.21521v1
- Date: Tue, 29 Jul 2025 06:08:28 GMT
- Title: Optimizing Active Learning in Vision-Language Models via Parameter-Efficient Uncertainty Calibration
- Authors: Athmanarayanan Lakshmi Narayanan, Amrutha Machireddy, Ranganath Krishnan,
- Abstract summary: We introduce a novel parameter-efficient learning methodology that incorporates uncertainty calibration loss within the Active Learning framework.<n>We demonstrate that our solution can match and exceed the performance of complex feature-based sampling techniques.
- Score: 6.7181844004432385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active Learning (AL) has emerged as a powerful approach for minimizing labeling costs by selectively sampling the most informative data for neural network model development. Effective AL for large-scale vision-language models necessitates addressing challenges in uncertainty estimation and efficient sampling given the vast number of parameters involved. In this work, we introduce a novel parameter-efficient learning methodology that incorporates uncertainty calibration loss within the AL framework. We propose a differentiable loss function that promotes uncertainty calibration for effectively selecting fewer and most informative data samples for fine-tuning. Through extensive experiments across several datasets and vision backbones, we demonstrate that our solution can match and exceed the performance of complex feature-based sampling techniques while being computationally very efficient. Additionally, we investigate the efficacy of Prompt learning versus Low-rank adaptation (LoRA) in sample selection, providing a detailed comparative analysis of these methods in the context of efficient AL.
Related papers
- Improving Data and Parameter Efficiency of Neural Language Models Using Representation Analysis [0.0]
This thesis addresses challenges related to data and parameter efficiency in neural language models.<n>The first part examines the properties and dynamics of language representations within neural models, emphasizing their significance in enhancing robustness and generalization.<n>The second part focuses on methods to significantly enhance data and parameter efficiency by integrating active learning strategies with parameter-efficient fine-tuning.<n>The third part explores weak supervision techniques enhanced by in-context learning to effectively utilize unlabeled data.
arXiv Detail & Related papers (2025-07-16T07:58:20Z) - CHASe: Client Heterogeneity-Aware Data Selection for Effective Federated Active Learning [22.38403602956309]
We propose CHASe (Client Heterogeneity-Aware Data Selection), specifically designed for Federated Active Learning (FAL)<n> CHASe focuses on identifying those unlabeled samples with high epistemic variations (EVs), which notably oscillate around the decision boundaries during training.<n> Experiments show that CHASe surpasses various established baselines in terms of effectiveness and efficiency, validated across diverse datasets, model complexities, and heterogeneous federation settings.
arXiv Detail & Related papers (2025-04-24T11:28:00Z) - Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
Foundational vision transformer models have shown impressive few shot performance on many vision tasks.
This research presents a novel investigation into the application of parameter efficient fine-tuning methods within an active learning (AL) framework.
arXiv Detail & Related papers (2024-06-13T16:30:32Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Optimal Sample Selection Through Uncertainty Estimation and Its
Application in Deep Learning [22.410220040736235]
We present a theoretically optimal solution for addressing both coreset selection and active learning.
Our proposed method, COPS, is designed to minimize the expected loss of a model trained on subsampled data.
arXiv Detail & Related papers (2023-09-05T14:06:33Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
slice detection models (SDM) automatically identify underperforming groups of datapoints.
This paper proposes a benchmark named "Discover, Explain, improve (DEIM)" for classification NLP tasks.
Our evaluation shows that Edisa can accurately select error-prone datapoints with informative semantic features.
arXiv Detail & Related papers (2022-11-08T19:00:00Z) - Mitigating Sampling Bias and Improving Robustness in Active Learning [13.994967246046008]
We introduce supervised contrastive active learning by leveraging the contrastive loss for active learning under a supervised setting.
We propose an unbiased query strategy that selects informative data samples of diverse feature representations.
We empirically demonstrate our proposed methods reduce sampling bias, achieve state-of-the-art accuracy and model calibration in an active learning setup.
arXiv Detail & Related papers (2021-09-13T20:58:40Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - High Dimensional Level Set Estimation with Bayesian Neural Network [58.684954492439424]
This paper proposes novel methods to solve the high dimensional Level Set Estimation problems using Bayesian Neural Networks.
For each problem, we derive the corresponding theoretic information based acquisition function to sample the data points.
Numerical experiments on both synthetic and real-world datasets show that our proposed method can achieve better results compared to existing state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-17T23:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.