POPCORN: Progressive Pseudo-labeling with Consistency Regularization and
Neighboring
- URL: http://arxiv.org/abs/2109.06361v1
- Date: Mon, 13 Sep 2021 23:36:36 GMT
- Title: POPCORN: Progressive Pseudo-labeling with Consistency Regularization and
Neighboring
- Authors: Reda Abdellah Kamraoui, Vinh-Thong Ta, Nicolas Papadakis, Fanny
Compaire, Jos\'e V Manjon, Pierrick Coup\'e
- Abstract summary: Semi-supervised learning (SSL) uses unlabeled data to compensate for the scarcity of images and the lack of method generalization to unseen domains.
We propose POPCORN, a novel method combining consistency regularization and pseudo-labeling designed for image segmentation.
- Score: 3.4253416336476246
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Semi-supervised learning (SSL) uses unlabeled data to compensate for the
scarcity of annotated images and the lack of method generalization to unseen
domains, two usual problems in medical segmentation tasks. In this work, we
propose POPCORN, a novel method combining consistency regularization and
pseudo-labeling designed for image segmentation. The proposed framework uses
high-level regularization to constrain our segmentation model to use similar
latent features for images with similar segmentations. POPCORN estimates a
proximity graph to select data from easiest ones to more difficult ones, in
order to ensure accurate pseudo-labeling and to limit confirmation bias.
Applied to multiple sclerosis lesion segmentation, our method demonstrates
competitive results compared to other state-of-the-art SSL strategies.
Related papers
- Leveraging CORAL-Correlation Consistency Network for Semi-Supervised Left Atrium MRI Segmentation [14.296441810235223]
Semi-supervised learning (SSL) has been widely used to learn from both a few labeled images and many unlabeled images.
Most current SSL-based segmentation methods use pixel values directly to identify similar features in labeled and unlabeled data.
We introduce CORAL(Correlation-Aligned)-Correlation Consistency Network (CORN) to capture the global structure shape and local details of Left Atrium.
arXiv Detail & Related papers (2024-10-21T11:46:28Z) - SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation [18.223854197580145]
Semi-supervised learning (SSL) for medical image segmentation is a challenging yet highly practical task.
We propose a novel framework based on FixMatch, named SemSim, powered by two appealing designs from semantic similarity perspective.
We show that SemSim yields consistent improvements over the state-of-the-art methods across three public segmentation benchmarks.
arXiv Detail & Related papers (2024-10-17T12:31:37Z) - CorrMatch: Label Propagation via Correlation Matching for
Semi-Supervised Semantic Segmentation [73.89509052503222]
This paper presents a simple but performant semi-supervised semantic segmentation approach, called CorrMatch.
We observe that the correlation maps not only enable clustering pixels of the same category easily but also contain good shape information.
We propose to conduct pixel propagation by modeling the pairwise similarities of pixels to spread the high-confidence pixels and dig out more.
Then, we perform region propagation to enhance the pseudo labels with accurate class-agnostic masks extracted from the correlation maps.
arXiv Detail & Related papers (2023-06-07T10:02:29Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Dense FixMatch: a simple semi-supervised learning method for pixel-wise
prediction tasks [68.36996813591425]
We propose Dense FixMatch, a simple method for online semi-supervised learning of dense and structured prediction tasks.
We enable the application of FixMatch in semi-supervised learning problems beyond image classification by adding a matching operation on the pseudo-labels.
Dense FixMatch significantly improves results compared to supervised learning using only labeled data, approaching its performance with 1/4 of the labeled samples.
arXiv Detail & Related papers (2022-10-18T15:02:51Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
This paper presents a Self-supervised Low-Rank Network ( SLRNet) for single-stage weakly supervised semantic segmentation (WSSS) and semi-supervised semantic segmentation (SSSS)
SLRNet uses cross-view self-supervision, that is, it simultaneously predicts several attentive LR representations from different views of an image to learn precise pseudo-labels.
Experiments on the Pascal VOC 2012, COCO, and L2ID datasets demonstrate that our SLRNet outperforms both state-of-the-art WSSS and SSSS methods with a variety of different settings.
arXiv Detail & Related papers (2022-03-19T09:19:55Z) - An Embarrassingly Simple Consistency Regularization Method for
Semi-Supervised Medical Image Segmentation [0.0]
The scarcity of pixel-level annotation is a prevalent problem in medical image segmentation tasks.
We introduce a novel regularization strategy involving computation-based mixing for semi-supervised medical image segmentation.
arXiv Detail & Related papers (2022-02-01T16:21:14Z) - Reference-guided Pseudo-Label Generation for Medical Semantic
Segmentation [25.76014072179711]
We propose a novel approach to generate supervision for semi-supervised semantic segmentation.
We use a small number of labeled images as reference material and match pixels in an unlabeled image to the semantics of the best fitting pixel in a reference set.
We achieve the same performance as a standard fully supervised model on X-ray anatomy segmentation, albeit 95% fewer labeled images.
arXiv Detail & Related papers (2021-12-01T12:21:24Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
We propose several strategies for learning from partially overlapping labels in the context of abdominal organ segmentation.
We find that combining a semi-supervised approach with an adaptive cross entropy loss can successfully exploit heterogeneously annotated data.
arXiv Detail & Related papers (2021-07-13T09:22:24Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z) - Causal Intervention for Weakly-Supervised Semantic Segmentation [122.1846968696862]
We aim to generate better pixel-level pseudo-masks by using only image-level labels.
We propose a structural causal model to analyze the causalities among images, contexts, and class labels.
Based on it, we develop a new method: Context Adjustment (CONTA), to remove the confounding bias in image-level classification.
arXiv Detail & Related papers (2020-09-26T09:26:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.