Leveraging CORAL-Correlation Consistency Network for Semi-Supervised Left Atrium MRI Segmentation
- URL: http://arxiv.org/abs/2410.15916v1
- Date: Mon, 21 Oct 2024 11:46:28 GMT
- Title: Leveraging CORAL-Correlation Consistency Network for Semi-Supervised Left Atrium MRI Segmentation
- Authors: Xinze Li, Runlin Huang, Zhenghao Wu, Bohan Yang, Wentao Fan, Chengzhang Zhu, Weifeng Su,
- Abstract summary: Semi-supervised learning (SSL) has been widely used to learn from both a few labeled images and many unlabeled images.
Most current SSL-based segmentation methods use pixel values directly to identify similar features in labeled and unlabeled data.
We introduce CORAL(Correlation-Aligned)-Correlation Consistency Network (CORN) to capture the global structure shape and local details of Left Atrium.
- Score: 14.296441810235223
- License:
- Abstract: Semi-supervised learning (SSL) has been widely used to learn from both a few labeled images and many unlabeled images to overcome the scarcity of labeled samples in medical image segmentation. Most current SSL-based segmentation methods use pixel values directly to identify similar features in labeled and unlabeled data. They usually fail to accurately capture the intricate attachment structures in the left atrium, such as the areas of inconsistent density or exhibit outward curvatures, adding to the complexity of the task. In this paper, we delve into this issue and introduce an effective solution, CORAL(Correlation-Aligned)-Correlation Consistency Network (CORN), to capture the global structure shape and local details of Left Atrium. Diverging from previous methods focused on each local pixel value, the CORAL-Correlation Consistency Module (CCM) in the CORN leverages second-order statistical information to capture global structural features by minimizing the distribution discrepancy between labeled and unlabeled samples in feature space. Yet, direct construction of features from unlabeled data frequently results in ``Sample Selection Bias'', leading to flawed supervision. We thus further propose the Dynamic Feature Pool (DFP) for the CCM, which utilizes a confidence-based filtering strategy to remove incorrectly selected features and regularize both teacher and student models by constraining the similarity matrix to be consistent. Extensive experiments on the Left Atrium dataset have shown that the proposed CORN outperforms previous state-of-the-art semi-supervised learning methods.
Related papers
- SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation [18.223854197580145]
Semi-supervised learning (SSL) for medical image segmentation is a challenging yet highly practical task.
We propose a novel framework based on FixMatch, named SemSim, powered by two appealing designs from semantic similarity perspective.
We show that SemSim yields consistent improvements over the state-of-the-art methods across three public segmentation benchmarks.
arXiv Detail & Related papers (2024-10-17T12:31:37Z) - PCLMix: Weakly Supervised Medical Image Segmentation via Pixel-Level Contrastive Learning and Dynamic Mix Augmentation [9.790026148340637]
We propose a novel weakly supervised medical image segmentation framework named PCLMix.
PCLMix is built upon a heterogeneous dual-decoder backbone, addressing the absence of structural priors.
Experiments on the ACDC dataset demonstrate that PCLMix appropriately propagates local supervision signals to the global scale.
arXiv Detail & Related papers (2024-05-10T07:38:02Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
We argue that the performance of the final classifier depends on the data separation present in the latent space and visual separation present in the projection.
We demonstrate our results by the classification of five real-world challenging image datasets of human intestinal parasites with only 1% supervised samples.
arXiv Detail & Related papers (2023-02-06T10:01:38Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
Anomaly detection aims at identifying deviant samples from the normal data distribution.
Contrastive learning has provided a successful way to sample representation that enables effective discrimination on anomalies.
We propose a novel hierarchical semi-supervised contrastive learning framework, for contamination-resistant anomaly detection.
arXiv Detail & Related papers (2022-07-24T18:49:26Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
This paper presents a Self-supervised Low-Rank Network ( SLRNet) for single-stage weakly supervised semantic segmentation (WSSS) and semi-supervised semantic segmentation (SSSS)
SLRNet uses cross-view self-supervision, that is, it simultaneously predicts several attentive LR representations from different views of an image to learn precise pseudo-labels.
Experiments on the Pascal VOC 2012, COCO, and L2ID datasets demonstrate that our SLRNet outperforms both state-of-the-art WSSS and SSSS methods with a variety of different settings.
arXiv Detail & Related papers (2022-03-19T09:19:55Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - POPCORN: Progressive Pseudo-labeling with Consistency Regularization and
Neighboring [3.4253416336476246]
Semi-supervised learning (SSL) uses unlabeled data to compensate for the scarcity of images and the lack of method generalization to unseen domains.
We propose POPCORN, a novel method combining consistency regularization and pseudo-labeling designed for image segmentation.
arXiv Detail & Related papers (2021-09-13T23:36:36Z) - Boosting Semi-supervised Image Segmentation with Global and Local Mutual
Information Regularization [9.994508738317585]
We present a novel semi-supervised segmentation method that leverages mutual information (MI) on categorical distributions.
We evaluate the method on three challenging publicly-available datasets for medical image segmentation.
arXiv Detail & Related papers (2021-03-08T15:13:25Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.