SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2410.13486v1
- Date: Thu, 17 Oct 2024 12:31:37 GMT
- Title: SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation
- Authors: Shiao Xie, Hongyi Wang, Ziwei Niu, Hao Sun, Shuyi Ouyang, Yen-Wei Chen, Lanfen Lin,
- Abstract summary: Semi-supervised learning (SSL) for medical image segmentation is a challenging yet highly practical task.
We propose a novel framework based on FixMatch, named SemSim, powered by two appealing designs from semantic similarity perspective.
We show that SemSim yields consistent improvements over the state-of-the-art methods across three public segmentation benchmarks.
- Score: 18.223854197580145
- License:
- Abstract: Semi-supervised learning (SSL) for medical image segmentation is a challenging yet highly practical task, which reduces reliance on large-scale labeled dataset by leveraging unlabeled samples. Among SSL techniques, the weak-to-strong consistency framework, popularized by FixMatch, has emerged as a state-of-the-art method in classification tasks. Notably, such a simple pipeline has also shown competitive performance in medical image segmentation. However, two key limitations still persist, impeding its efficient adaptation: (1) the neglect of contextual dependencies results in inconsistent predictions for similar semantic features, leading to incomplete object segmentation; (2) the lack of exploitation of semantic similarity between labeled and unlabeled data induces considerable class-distribution discrepancy. To address these limitations, we propose a novel semi-supervised framework based on FixMatch, named SemSim, powered by two appealing designs from semantic similarity perspective: (1) rectifying pixel-wise prediction by reasoning about the intra-image pair-wise affinity map, thus integrating contextual dependencies explicitly into the final prediction; (2) bridging labeled and unlabeled data via a feature querying mechanism for compact class representation learning, which fully considers cross-image anatomical similarities. As the reliable semantic similarity extraction depends on robust features, we further introduce an effective spatial-aware fusion module (SFM) to explore distinctive information from multiple scales. Extensive experiments show that SemSim yields consistent improvements over the state-of-the-art methods across three public segmentation benchmarks.
Related papers
- SemFlow: Binding Semantic Segmentation and Image Synthesis via Rectified Flow [94.90853153808987]
Semantic segmentation and semantic image synthesis are representative tasks in visual perception and generation.
We propose a unified framework (SemFlow) and model them as a pair of reverse problems.
Experiments show that our SemFlow achieves competitive results on semantic segmentation and semantic image synthesis tasks.
arXiv Detail & Related papers (2024-05-30T17:34:40Z) - Semantic Connectivity-Driven Pseudo-labeling for Cross-domain
Segmentation [89.41179071022121]
Self-training is a prevailing approach in cross-domain semantic segmentation.
We propose a novel approach called Semantic Connectivity-driven pseudo-labeling.
This approach formulates pseudo-labels at the connectivity level and thus can facilitate learning structured and low-noise semantics.
arXiv Detail & Related papers (2023-12-11T12:29:51Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
We develop a novel Multi-Scale Cross Supervised Contrastive Learning framework to segment structures in medical images.
Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations.
It outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice.
arXiv Detail & Related papers (2023-06-25T16:55:32Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Exploring Feature Representation Learning for Semi-supervised Medical
Image Segmentation [30.608293915653558]
We present a two-stage framework for semi-supervised medical image segmentation.
Key insight is to explore the feature representation learning with labeled and unlabeled (i.e., pseudo labeled) images.
A stage-adaptive contrastive learning method is proposed, containing a boundary-aware contrastive loss.
We present an aleatoric uncertainty-aware method, namely AUA, to generate higher-quality pseudo labels.
arXiv Detail & Related papers (2021-11-22T05:06:12Z) - POPCORN: Progressive Pseudo-labeling with Consistency Regularization and
Neighboring [3.4253416336476246]
Semi-supervised learning (SSL) uses unlabeled data to compensate for the scarcity of images and the lack of method generalization to unseen domains.
We propose POPCORN, a novel method combining consistency regularization and pseudo-labeling designed for image segmentation.
arXiv Detail & Related papers (2021-09-13T23:36:36Z) - Information Symmetry Matters: A Modal-Alternating Propagation Network
for Few-Shot Learning [118.45388912229494]
We propose a Modal-Alternating Propagation Network (MAP-Net) to supplement the absent semantic information of unlabeled samples.
We design a Relation Guidance (RG) strategy to guide the visual relation vectors via semantics so that the propagated information is more beneficial.
Our proposed method achieves promising performance and outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-09-03T03:43:53Z) - Semi-supervised Semantic Segmentation with Directional Context-aware
Consistency [66.49995436833667]
We focus on the semi-supervised segmentation problem where only a small set of labeled data is provided with a much larger collection of totally unlabeled images.
A preferred high-level representation should capture the contextual information while not losing self-awareness.
We present the Directional Contrastive Loss (DC Loss) to accomplish the consistency in a pixel-to-pixel manner.
arXiv Detail & Related papers (2021-06-27T03:42:40Z) - Mixup-CAM: Weakly-supervised Semantic Segmentation via Uncertainty
Regularization [73.03956876752868]
We propose a principled and end-to-end train-able framework to allow the network to pay attention to other parts of the object.
Specifically, we introduce the mixup data augmentation scheme into the classification network and design two uncertainty regularization terms to better interact with the mixup strategy.
arXiv Detail & Related papers (2020-08-03T21:19:08Z) - Disentangling Human Error from the Ground Truth in Segmentation of
Medical Images [12.009437407687987]
We present a method for jointly learning, from purely noisy observations alone, the reliability of individual annotators and the true segmentation label distributions.
We demonstrate the utility of the method on three public medical imaging segmentation datasets with simulated (when necessary) and real diverse annotations.
arXiv Detail & Related papers (2020-07-31T11:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.