論文の概要: Sensor Adversarial Traits: Analyzing Robustness of 3D Object Detection
Sensor Fusion Models
- arxiv url: http://arxiv.org/abs/2109.06363v1
- Date: Mon, 13 Sep 2021 23:38:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 04:12:42.250453
- Title: Sensor Adversarial Traits: Analyzing Robustness of 3D Object Detection
Sensor Fusion Models
- Title(参考訳): センサ対向特性:3次元物体検出センサ融合モデルのロバスト性の解析
- Authors: Won Park, Nan Li, Qi Alfred Chen, Z. Morley Mao
- Abstract要約: 我々は,高性能でオープンソースのセンサ融合モデルアーキテクチャの強靭性を敵攻撃に対して解析する。
LIDARセンサーを使用しているにもかかわらず、このモデルは、意図的に構築された画像ベースの敵攻撃に対して脆弱であることがわかった。
- 参考スコア(独自算出の注目度): 16.823829387723524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A critical aspect of autonomous vehicles (AVs) is the object detection stage,
which is increasingly being performed with sensor fusion models: multimodal 3D
object detection models which utilize both 2D RGB image data and 3D data from a
LIDAR sensor as inputs. In this work, we perform the first study to analyze the
robustness of a high-performance, open source sensor fusion model architecture
towards adversarial attacks and challenge the popular belief that the use of
additional sensors automatically mitigate the risk of adversarial attacks. We
find that despite the use of a LIDAR sensor, the model is vulnerable to our
purposefully crafted image-based adversarial attacks including disappearance,
universal patch, and spoofing. After identifying the underlying reason, we
explore some potential defenses and provide some recommendations for improved
sensor fusion models.
- Abstract(参考訳): 2次元RGB画像データとLIDARセンサーからの3Dデータの両方を入力として利用するマルチモーダル3Dオブジェクト検出モデルである。
本研究では,高性能でオープンソースなセンサ融合モデルアーキテクチャの敵攻撃に対するロバスト性を初めて分析し,敵攻撃のリスクを自動的に軽減する追加センサの使用という一般的な信念に挑戦する。
LIDARセンサーを使用しているにもかかわらず、このモデルは、失明、普遍パッチ、偽造など、目的に作られた画像ベースの敵攻撃に対して脆弱であることがわかった。
根本的な理由を特定した後、いくつかの潜在的な防御を探求し、センサー融合モデルの改善を推奨する。
関連論文リスト
- Increasing the Robustness of Model Predictions to Missing Sensors in Earth Observation [5.143097874851516]
入力センサドロップアウト(ISensD)とアンサンブルセンサ不変(ESensI)という,マルチセンサシナリオに適した2つの新しい手法について検討した。
これらの手法は, モデル予測の頑健さを, センサの欠如に対して効果的に向上させることを示した。
アンサンブル・マルチセンサー・モデルはセンサの欠如に対して最も頑丈であることが観察された。
論文 参考訳(メタデータ) (2024-07-22T09:58:29Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
本研究は,カメラとライダー情報を用いた物体検出ネットワークに新たな改良を加えたものである。
同じ車両内の隣のカメラにまたがって物体を再識別する作業のために、追加のブランチが組み込まれている。
その結果,従来の非最大抑圧(NMS)技術よりも,この手法が優れていることが示された。
論文 参考訳(メタデータ) (2023-10-09T15:16:35Z) - ShaSTA-Fuse: Camera-LiDAR Sensor Fusion to Model Shape and
Spatio-Temporal Affinities for 3D Multi-Object Tracking [26.976216624424385]
3Dマルチオブジェクトトラッキング(MOT)は、自律移動エージェントが安全にシーンをナビゲートするために不可欠である。
我々は,カメラとLiDARセンサ情報を融合した3DMOTフレームワークの開発を目指している。
論文 参考訳(メタデータ) (2023-10-04T02:17:59Z) - AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware
Robust Adversarial Training [64.14759275211115]
そこで本研究では,DART3Dと呼ばれるモノクル3次元物体検出のための,深度対応の頑健な対向学習法を提案する。
我々の敵の訓練アプローチは、本質的な不確実性に乗じて、敵の攻撃に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2023-09-03T07:05:32Z) - A Comprehensive Study of the Robustness for LiDAR-based 3D Object
Detectors against Adversarial Attacks [84.10546708708554]
3Dオブジェクト検出器は、セキュリティクリティカルなタスクにおいてますます重要になっている。
敵の攻撃に対する強固さを理解することが不可欠である。
本稿では,LiDARをベースとした3次元検出器の対角攻撃時のロバスト性評価と解析を行った。
論文 参考訳(メタデータ) (2022-12-20T13:09:58Z) - ImLiDAR: Cross-Sensor Dynamic Message Propagation Network for 3D Object
Detection [20.44294678711783]
我々は,カメラ画像とLiDAR点雲のマルチスケール特徴を段階的に融合させることにより,センサ間差を狭める新しい3ODパラダイムであるImLiDARを提案する。
まず,マルチスケール画像とポイント特徴の最良の組み合わせを目的とした,クロスセンサ動的メッセージ伝搬モジュールを提案する。
第二に、効率的なセットベース検出器を設計できるような、直接セット予測問題を提起する。
論文 参考訳(メタデータ) (2022-11-17T13:31:23Z) - HRFuser: A Multi-resolution Sensor Fusion Architecture for 2D Object
Detection [0.0]
マルチモーダル2Dオブジェクト検出のためのモジュールアーキテクチャであるHRFuserを提案する。
マルチレゾリューション方式で複数のセンサーを融合させ、任意の数の入力モードにスケールする。
我々は、nuScenesとDENSEデータセットに関する実験を通じて、我々のモデルが追加のモーダルから補完的な特徴を効果的に活用できることを実証する。
論文 参考訳(メタデータ) (2022-06-30T09:40:05Z) - TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with
Transformers [49.689566246504356]
そこで本研究では,LiDAR-カメラ融合に対するソフトアソシエーション機構による堅牢な解であるTransFusionを提案する。
TransFusionは大規模データセット上で最先端のパフォーマンスを実現する。
提案手法を3次元トラッキングタスクに拡張し,nuScenesトラッキングのリーダーボードにおける第1位を達成する。
論文 参考訳(メタデータ) (2022-03-22T07:15:13Z) - 3D-VField: Learning to Adversarially Deform Point Clouds for Robust 3D
Object Detection [111.32054128362427]
安全クリティカルな環境では、アウト・オブ・ディストリビューションとロングテールサンプルの堅牢性は、危険な問題を回避するのに不可欠である。
トレーニング中の変形点雲を考慮した3次元物体検出器の領域外データへの一般化を著しく改善する。
我々は、リアルに損傷を受けた稀な車の合成データセットであるCrashDを提案し、共有する。
論文 参考訳(メタデータ) (2021-12-09T08:50:54Z) - Detecting and Identifying Optical Signal Attacks on Autonomous Driving
Systems [25.32946739108013]
攻撃対象のセンサーを検知・識別する枠組みを提案する。
具体的には、3つのセンサーからなるシステムに対する攻撃を検知する新しい手法を最初に開発する。
本研究では,実データと最先端機械学習モデルを用いて,攻撃検出手法の評価を行う。
論文 参考訳(メタデータ) (2021-10-20T12:21:04Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
本稿では,敵物体をホスト車両の上に配置することで,マルチセンサ検出の実用的感受性を示す。
実験の結果, 攻撃が成功した原因は主に画像の特徴が損なわれやすいことが判明した。
よりロバストなマルチモーダル知覚システムに向けて,特徴分断を伴う敵対的訓練が,このような攻撃に対するロバスト性を大幅に高めることを示す。
論文 参考訳(メタデータ) (2021-01-17T21:15:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。