A thorough introduction to non-relativistic matrix mechanics in
multi-qudit systems with a study on quantum entanglement and quantum
quantifiers
- URL: http://arxiv.org/abs/2109.06444v3
- Date: Sun, 19 Sep 2021 06:49:31 GMT
- Title: A thorough introduction to non-relativistic matrix mechanics in
multi-qudit systems with a study on quantum entanglement and quantum
quantifiers
- Authors: Lucas Camponogara Viera and Shu-Hsien Liao (Institute of
Electro-Optical Engineering, National Taiwan Normal University, Taipei,
Taiwan)
- Abstract summary: This article provides a deep and abiding understanding of non-relativistic matrix mechanics.
We derive and analyze the respective 1-qubit, 1-qutrit, 2-qubit, and 2-qudit coherent and incoherent density operators.
We also address the fundamental concepts of quantum nondemolition measurements, quantum decoherence and, particularly, quantum entanglement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is among the most far-reaching technologies of the 21st
century, tackling challenges at the cutting edge of physics. This new paradigm
in computer science harnesses quantum entanglement, one striking non-intuitive
feature of quantum mechanics and a cornerstone of quantum information, to
provide computation with a quantum speed-up over the best-known classical
algorithms and to enable encrypted data communication against eavesdropping.
The bulk of this article is focused on providing a deep and abiding
understanding of non-relativistic matrix mechanics by demonstrating the
fundamental mathematical identities of the contemporary postulatory approach of
quantum mechanics within the state vector and density operator formalism in
multipartite systems. In addition to that, we derive and analyze the respective
1-qubit, 1-qutrit, 2-qubit, and 2-qudit coherent and incoherent density
operators using Bloch's parametrization for generalized $d$-dimensional
$N$-qudit states embedded in the $SU(d)$ Lie group with associate generalized
Gell Mann's matrices spanning the $\mathfrak{su}(d)$ Lie algebra. We also
address the fundamental concepts of quantum nondemolition measurements, quantum
decoherence and, particularly, quantum entanglement providing for the latter a
systematic view on its historical development and mathematical description in
multipartite systems. We conclude our review by introducing some of the
ubiquitous quantum quantifiers required to measure degrees of quantum
entanglement and quantum coherence, deriving the $p$-norm quantum coherence
measure for a 1-qubit state.
Related papers
- Quantum computing topological invariants of two-dimensional quantum matter [0.0]
We present two quantum circuits for calculating Chern numbers of two-dimensional quantum matter on quantum computers.
First algorithm uses many qubits, and we analyze it using a tensor-network simulator of quantum circuits.
Second circuit uses fewer qubits, and we implement it experimentally on a quantum computer based on superconducting qubits.
arXiv Detail & Related papers (2024-04-09T06:22:50Z) - Simulating 2D lattice gauge theories on a qudit quantum computer [2.2246996966725305]
We present a quantum computation of the properties of the basic building block of two-dimensional lattice quantum electrodynamics.
This is made possible by the use of a trapped-ion qudit quantum processor.
Qudits are ideally suited for describing gauge fields, which are naturally high-dimensional.
arXiv Detail & Related papers (2023-10-18T17:06:35Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Unraveling the Mystery of Quantum Measurement with A New Space-Time Approach to Relativistic Quantum Mechanics [9.116661570248171]
Quantum measurement is a fundamental concept in the field of quantum mechanics.
Despite its significance, four fundamental issues continue to pose significant challenges to the broader application of quantum measurement.
We employ a new space-time approach to relativistic quantum mechanics to address these issues systematically.
arXiv Detail & Related papers (2023-06-01T13:25:08Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Unclonability and Quantum Cryptanalysis: From Foundations to
Applications [0.0]
Unclonability is a fundamental concept in quantum theory and one of the main non-classical properties of quantum information.
We introduce new notions of unclonability in the quantum world, namely quantum physical unclonability.
We discuss several applications of this new type of unclonability as a cryptographic resource for designing provably secure quantum protocols.
arXiv Detail & Related papers (2022-10-31T17:57:09Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - A prototype of quantum von Neumann architecture [0.0]
We propose a model of universal quantum computer system, the quantum version of the von Neumann architecture.
It uses ebits as elements of the quantum memory unit, and qubits as elements of the quantum control unit and processing unit.
Our primary study demonstrates the manifold power of quantum information and paves the way for the creation of quantum computer systems.
arXiv Detail & Related papers (2021-12-17T06:33:31Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.