論文の概要: Expert Knowledge-Guided Length-Variant Hierarchical Label Generation for
Proposal Classification
- arxiv url: http://arxiv.org/abs/2109.06661v2
- Date: Wed, 15 Sep 2021 06:35:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 10:38:34.922097
- Title: Expert Knowledge-Guided Length-Variant Hierarchical Label Generation for
Proposal Classification
- Title(参考訳): 提案分類のための知識誘導長可変階層ラベル生成
- Authors: Meng Xiao, Ziyue Qiao, Yanjie Fu, Yi Du, Pengyang Wang
- Abstract要約: 提案分類は、提案をラベルの長さ可変シーケンスに分類することを目的としている。
我々は3つの特徴を共同でモデル化する新しいディーププロポーザル分類フレームワークを開発した。
我々のモデルは,次のラベル予測を止めるために,ラベルシーケンスの最適な長さを自動的に識別することができる。
- 参考スコア(独自算出の注目度): 21.190465278587045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To advance the development of science and technology, research proposals are
submitted to open-court competitive programs developed by government agencies
(e.g., NSF). Proposal classification is one of the most important tasks to
achieve effective and fair review assignments. Proposal classification aims to
classify a proposal into a length-variant sequence of labels. In this paper, we
formulate the proposal classification problem into a hierarchical multi-label
classification task. Although there are certain prior studies, proposal
classification exhibit unique features: 1) the classification result of a
proposal is in a hierarchical discipline structure with different levels of
granularity; 2) proposals contain multiple types of documents; 3) domain
experts can empirically provide partial labels that can be leveraged to improve
task performances. In this paper, we focus on developing a new deep proposal
classification framework to jointly model the three features. In particular, to
sequentially generate labels, we leverage previously-generated labels to
predict the label of next level; to integrate partial labels from experts, we
use the embedding of these empirical partial labels to initialize the state of
neural networks. Our model can automatically identify the best length of label
sequence to stop next label prediction. Finally, we present extensive results
to demonstrate that our method can jointly model partial labels, textual
information, and semantic dependencies in label sequences, and, thus, achieve
advanced performances.
- Abstract(参考訳): 科学技術の発展を促進するため、研究提案は政府機関(例えばNSF)によって開発されたオープンコート競争プログラムに提出される。
提案分類は、効果的かつ公正なレビュー課題を達成する上で最も重要な課題の1つである。
提案分類は、提案をラベルの長さ可変シーケンスに分類することを目的としている。
本稿では,提案分類問題を階層型マルチラベル分類タスクに定式化する。
先行研究もあるが、提案分類には独特の特徴がある。
1) 提案の分類結果は,粒度の異なる階層的な規律構造にある。
2) 複数の種類の書類を含む提案
3) ドメインの専門家は、タスクパフォーマンスを改善するために活用できる部分的なラベルを経験的に提供できます。
本稿では,これら3つの特徴を共同でモデル化する新しい深層提案分類フレームワークの開発に着目する。
特に,ラベルを逐次生成するために,事前に生成したラベルを活用して次のレベルのラベルを予測する。専門家による部分ラベルを統合するには,これらの経験的部分ラベルを埋め込んでニューラルネットワークの状態を初期化する。
我々のモデルは,次のラベル予測を止めるために,ラベルシーケンスの最適な長さを自動的に識別することができる。
最後に,本手法がラベル配列における部分的ラベル,テキスト情報,意味的依存関係を共同でモデル化できることを実証するために,広範な結果を提示する。
関連論文リスト
- Recent Advances in Hierarchical Multi-label Text Classification: A
Survey [11.709847202580505]
階層的マルチラベルテキスト分類は、入力されたテキストを複数のラベルに分類することを目的としており、その中にラベルが構造化され階層的である。
これは、科学文献のアーカイブなど、多くの現実世界の応用において重要なタスクである。
論文 参考訳(メタデータ) (2023-07-30T16:13:00Z) - Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
モデル学習プロセスにおける自己監督型学習(SSL)と新しい自己監督型関係関係(R2)分類タスクの設計
テキスト分類とR2分類を最適化対象として扱うテキスト分類のための関係学習ネットワーク(R2-Net)の関係について検討する。
ラベルセマンティックラーニングのためのマルチアスペクト記述を得るためのWordNetからの外部知識。
論文 参考訳(メタデータ) (2023-06-15T02:19:34Z) - Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations [91.67511167969934]
imprecise label learning (ILL)は、様々な不正確なラベル構成で学習を統合するためのフレームワークである。
我々は、ILLが部分ラベル学習、半教師付き学習、雑音ラベル学習にシームレスに適応できることを実証した。
論文 参考訳(メタデータ) (2023-05-22T04:50:28Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
不完全なラベルを持つマルチラベル認識(MLR)は非常に難しい。
最近の研究は、視覚言語モデルであるCLIPにおける画像とラベルの対応を探り、不十分なアノテーションを補うことを目指している。
我々は,MLRにおけるラベル管理の欠如を,構造化されたセマンティクスを導出することにより,不完全なラベルで修復することを提唱する。
論文 参考訳(メタデータ) (2023-03-23T12:39:20Z) - Adopting the Multi-answer Questioning Task with an Auxiliary Metric for
Extreme Multi-label Text Classification Utilizing the Label Hierarchy [10.87653109398961]
本稿では,過度なマルチラベル分類のための複数問合せタスクを採用する。
本研究では,提案手法と評価基準を法域に適用する。
論文 参考訳(メタデータ) (2023-03-02T08:40:31Z) - TagRec++: Hierarchical Label Aware Attention Network for Question
Categorization [0.3683202928838613]
オンライン学習システムは、階層的な性質の明確に定義された分類に従ってコンテンツを整理する。
階層ラベルへの入力を分類するタスクは通常、フラットな多クラス分類問題として扱われる。
各コンテンツに対して適切な階層ラベルを検索するために,タスクを高密度検索問題として定式化する。
論文 参考訳(メタデータ) (2022-08-10T05:08:37Z) - Label Semantic Aware Pre-training for Few-shot Text Classification [53.80908620663974]
テキスト分類システムの一般化とデータ効率を向上させるために,ラベルセマンティック・アウェア事前学習(LSAP)を提案する。
LSAPは、ラベル付き文の2次事前学習を行うことにより、ラベルセマンティクスを事前学習された生成モデル(T5)に組み込む。
論文 参考訳(メタデータ) (2022-04-14T17:33:34Z) - MMF: Multi-Task Multi-Structure Fusion for Hierarchical Image
Classification [10.713537820833665]
我々は、異なるラベル構造がカテゴリ認識に様々な事前知識を提供すると考えている。
異なるラベル構造を統合するマルチタスク多構造融合モデルを提案する。
論文 参考訳(メタデータ) (2021-07-02T02:53:35Z) - Joint Learning of Hyperbolic Label Embeddings for Hierarchical
Multi-label Classification [9.996804039553858]
ラベルが階層内に存在するマルチラベル分類の問題を検討する。
共同学習のための新しい定式化を提案し,その効果を実証的に評価する。
論文 参考訳(メタデータ) (2021-01-13T10:58:54Z) - Interaction Matching for Long-Tail Multi-Label Classification [57.262792333593644]
既存のマルチラベル分類モデルにおいて,制約に対処するためのエレガントで効果的なアプローチを提案する。
ソフトなn-gram相互作用マッチングを実行することで、ラベルと自然言語記述をマッチングする。
論文 参考訳(メタデータ) (2020-05-18T15:27:55Z) - Unsupervised Person Re-identification via Multi-label Classification [55.65870468861157]
本稿では,教師なしのReIDを多ラベル分類タスクとして定式化し,段階的に真のラベルを求める。
提案手法は,まず,各人物画像に単一クラスラベルを割り当てることから始まり,ラベル予測のために更新されたReIDモデルを活用することで,多ラベル分類へと進化する。
マルチラベル分類におけるReIDモデルのトレーニング効率を高めるために,メモリベースマルチラベル分類損失(MMCL)を提案する。
論文 参考訳(メタデータ) (2020-04-20T12:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。