論文の概要: Interaction Matching for Long-Tail Multi-Label Classification
- arxiv url: http://arxiv.org/abs/2005.08805v1
- Date: Mon, 18 May 2020 15:27:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 23:40:33.611121
- Title: Interaction Matching for Long-Tail Multi-Label Classification
- Title(参考訳): ロングテールマルチラベル分類のためのインタラクションマッチング
- Authors: Sean MacAvaney, Franck Dernoncourt, Walter Chang, Nazli Goharian,
Ophir Frieder
- Abstract要約: 既存のマルチラベル分類モデルにおいて,制約に対処するためのエレガントで効果的なアプローチを提案する。
ソフトなn-gram相互作用マッチングを実行することで、ラベルと自然言語記述をマッチングする。
- 参考スコア(独自算出の注目度): 57.262792333593644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an elegant and effective approach for addressing limitations in
existing multi-label classification models by incorporating interaction
matching, a concept shown to be useful for ad-hoc search result ranking. By
performing soft n-gram interaction matching, we match labels with natural
language descriptions (which are common to have in most multi-labeling tasks).
Our approach can be used to enhance existing multi-label classification
approaches, which are biased toward frequently-occurring labels. We evaluate
our approach on two challenging tasks: automatic medical coding of clinical
notes and automatic labeling of entities from software tutorial text. Our
results show that our method can yield up to an 11% relative improvement in
macro performance, with most of the gains stemming labels that appear
infrequently in the training set (i.e., the long tail of labels).
- Abstract(参考訳): 本稿では,従来のマルチラベル分類モデルにおいて,相互作用マッチングを組み込むことにより,制約に対処するエレガントで効果的な手法を提案する。
ソフトなn-gramインタラクションマッチングを実行することで、ラベルと自然言語記述(ほとんどのマルチラベルタスクでよく見られる)をマッチングする。
提案手法は,頻繁に発生するラベルに偏りがある既存のマルチラベル分類手法の強化に有効である。
臨床ノートの自動医療コーディングとソフトウェアチュートリアルテキストからのエンティティの自動ラベル付けという2つの課題に対するアプローチを評価した。
以上の結果から,本手法はマクロ性能を11%向上させることができ,そのほとんどはトレーニングセット(すなわちラベルのロングテール)にはほとんど現れない。
関連論文リスト
- Leveraging Label Semantics and Meta-Label Refinement for Multi-Label Question Classification [11.19022605804112]
本稿では,新手法RR2QCを多ラベル質問分類に適用する。
ラベルセマンティクスとメタラベルの改良を使用して、パーソナライズされた学習とリソースレコメンデーションを強化する。
実験の結果,RR2QCはPrecision@kとF1スコアの既存の分類方法よりも優れていた。
論文 参考訳(メタデータ) (2024-11-04T06:27:14Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
不完全なラベルを持つマルチラベル認識(MLR)は非常に難しい。
最近の研究は、視覚言語モデルであるCLIPにおける画像とラベルの対応を探り、不十分なアノテーションを補うことを目指している。
我々は,MLRにおけるラベル管理の欠如を,構造化されたセマンティクスを導出することにより,不完全なラベルで修復することを提唱する。
論文 参考訳(メタデータ) (2023-03-23T12:39:20Z) - RLSEP: Learning Label Ranks for Multi-label Classification [0.0]
マルチラベルランキングは、複数の可能なクラスの予測ラベルのランキングにインスタンスをマップする。
不正なランク付けペアに対するペナルティを組み込んだモデル最適化のための,新たな専用損失関数を提案する。
提案手法は,合成および実世界のランク付けされたデータセットについて,最も優れた評価結果を得る。
論文 参考訳(メタデータ) (2022-12-08T00:59:09Z) - An Effective Approach for Multi-label Classification with Missing Labels [8.470008570115146]
分類ネットワークにさらなる複雑さをもたらすことなく、アノテーションのコストを削減するための擬似ラベルベースのアプローチを提案する。
新たな損失関数を設計することにより、各インスタンスが少なくとも1つの正のラベルを含む必要があるという要求を緩和することができる。
提案手法は,正のラベルと負のラベルの不均衡を扱える一方で,既存の欠落ラベル学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-24T23:13:57Z) - Multi-label Classification with High-rank and High-order Label
Correlations [62.39748565407201]
従来の手法では, ラベル行列を低ランク行列係数化した潜在ラベル空間に変換することにより, 高階ラベル相関を捕えることができた。
本稿では,高次ラベル相関を明示的に記述する簡易かつ効果的な手法を提案し,同時にラベル行列の高次値を維持する。
12個のベンチマークデータセットの比較研究により,マルチラベル分類における提案アルゴリズムの有効性が検証された。
論文 参考訳(メタデータ) (2022-07-09T05:15:31Z) - Enhancing Label Correlation Feedback in Multi-Label Text Classification
via Multi-Task Learning [6.1538971100140145]
ラベル相関フィードバックを高めるために,マルチタスク学習を用いた新しい手法を提案する。
本稿では,ラベル相関学習を強化するための2つの補助ラベル共起予測タスクを提案する。
論文 参考訳(メタデータ) (2021-06-06T12:26:14Z) - A Study on the Autoregressive and non-Autoregressive Multi-label
Learning [77.11075863067131]
本稿では,ラベルとラベルの依存関係を共同で抽出する自己アテンションに基づく変分エンコーダモデルを提案する。
したがって、ラベルラベルとラベル機能の両方の依存関係を保ちながら、すべてのラベルを並列に予測することができる。
論文 参考訳(メタデータ) (2020-12-03T05:41:44Z) - Few-shot Learning for Multi-label Intent Detection [59.66787898744991]
State-of-the-art work estimates label-instancelevance scores and using threshold to select multiple associated intent labels。
2つのデータセットの実験により、提案モデルが1ショットと5ショットの両方の設定において強いベースラインを著しく上回ることが示された。
論文 参考訳(メタデータ) (2020-10-11T14:42:18Z) - SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning [87.27700889147144]
我々は、入力(予測可能)に応じて予測しやすく、他の可能なラベル(表現可能)をうまく回復できるランドマークとして、ラベルの小さなサブセットを選択することを提案する。
我々は,ADM(Alternating Direction Method)を用いてこの問題を解決する。実世界のデータセットに関する実証研究により,本手法が他の最先端手法よりも優れた分類性能を実現することを示す。
論文 参考訳(メタデータ) (2020-08-16T11:07:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。