論文の概要: ROMAX: Certifiably Robust Deep Multiagent Reinforcement Learning via
Convex Relaxation
- arxiv url: http://arxiv.org/abs/2109.06795v1
- Date: Tue, 14 Sep 2021 16:18:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-15 19:24:19.610980
- Title: ROMAX: Certifiably Robust Deep Multiagent Reinforcement Learning via
Convex Relaxation
- Title(参考訳): romax:凸緩和による頑健な深層マルチエージェント強化学習
- Authors: Chuangchuang Sun, Dong-Ki Kim, and Jonathan P. How
- Abstract要約: サイバー物理攻撃は、マルチエージェント強化学習の堅牢性に挑戦することができる。
我々は,他のエージェントの最悪のポリシー更新を推測するミニマックスMARL手法を提案する。
- 参考スコア(独自算出の注目度): 32.091346776897744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a multirobot system, a number of cyber-physical attacks (e.g.,
communication hijack, observation perturbations) can challenge the robustness
of agents. This robustness issue worsens in multiagent reinforcement learning
because there exists the non-stationarity of the environment caused by
simultaneously learning agents whose changing policies affect the transition
and reward functions. In this paper, we propose a minimax MARL approach to
infer the worst-case policy update of other agents. As the minimax formulation
is computationally intractable to solve, we apply the convex relaxation of
neural networks to solve the inner minimization problem. Such convex relaxation
enables robustness in interacting with peer agents that may have significantly
different behaviors and also achieves a certified bound of the original
optimization problem. We evaluate our approach on multiple mixed
cooperative-competitive tasks and show that our method outperforms the previous
state of the art approaches on this topic.
- Abstract(参考訳): マルチロボットシステムでは、多くのサイバー物理攻撃(通信ハイジャック、観測摂動など)がエージェントの堅牢性に挑戦することができる。
このロバスト性問題は、遷移と報酬関数に影響を与える変更ポリシーを持つ学習エージェントによる環境の非定常性が存在するため、マルチエージェント強化学習において悪化する。
本稿では,他のエージェントの最悪のポリシー更新を推測するミニマックスMARL手法を提案する。
ミニマックスの定式化は計算的に解けるので、ニューラルネットワークの凸緩和を適用して内部最小化問題を解く。
このような凸緩和は、異なる振る舞いを持つ可能性のあるピアエージェントとの相互作用において堅牢性を可能にし、また元の最適化問題の証明された境界を達成する。
提案手法は,複数の協調競争課題に対するアプローチを評価し,本手法が先行する技術アプローチよりも優れていることを示す。
関連論文リスト
- Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
統計的に同一性を持つ無線ネットワークにおける自己回帰的マルコフ過程のサンプリングとリモート推定の課題に対処する。
我々のゴールは、分散化されたスケーラブルサンプリングおよび送信ポリシーを用いて、時間平均推定誤差と/または情報の年齢を最小化することである。
論文 参考訳(メタデータ) (2024-04-04T06:24:11Z) - Risk-Aware Distributed Multi-Agent Reinforcement Learning [8.287693091673658]
我々は,リスク認識行動の学習により,未知環境における意思決定問題を解決するために,分散MARLアプローチを開発した。
次に,CVaR QD-Learningアルゴリズムと呼ばれる分散MARLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-04T17:56:44Z) - A Variational Approach to Mutual Information-Based Coordination for
Multi-Agent Reinforcement Learning [17.893310647034188]
マルチエージェント強化学習のための新しい相互情報フレームワークを提案する。
導出された下界を最大化するためにポリシーを適用することで,多エージェントアクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクティベートアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-01T12:21:30Z) - Residual Q-Networks for Value Function Factorizing in Multi-Agent
Reinforcement Learning [0.0]
マルチエージェント強化学習(MARL)のためのResidual Q-Networks(RQN)の概念を提案する。
RQNは、個人-グローバル-マックス基準(IGM)を保存する方法で、個々のQ値軌跡を変換することを学ぶ
提案手法はより高速に収束し、安定性が向上し、より広い環境群で堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-05-30T16:56:06Z) - Learning Cooperative Multi-Agent Policies with Partial Reward Decoupling [13.915157044948364]
マルチエージェント強化学習をスケールする上で重要な障害の1つは、個々のエージェントの行動にクレジットを割り当てることである。
本稿では,このクレジット代入問題に対して,PRD(textitpartial reward decoupling)と呼ぶアプローチで対処する。
PRDは、大規模な協調的マルチエージェントRL問題を、エージェントのサブセットを含む分離されたサブプロブレムに分解し、クレジット割り当てを単純化する。
論文 参考訳(メタデータ) (2021-12-23T17:48:04Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
本研究では,コミュニケーション制約下での運用を目的とした適応型分散学習戦略について検討する。
我々は,ストリーミングデータの連続的な観察から,オンライン最適化問題を解決しなければならないエージェントのネットワークを考える。
論文 参考訳(メタデータ) (2021-12-03T19:23:48Z) - DSDF: An approach to handle stochastic agents in collaborative
multi-agent reinforcement learning [0.0]
ロボットの機能低下や老化によって引き起こされるエージェントの真偽が、協調の不確実性にどのように寄与するかを示す。
DSDFは不確実性に応じてエージェントの割引係数を調整し,その値を用いて個々のエージェントのユーティリティネットワークを更新する。
論文 参考訳(メタデータ) (2021-09-14T12:02:28Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning [92.05556163518999]
MARLは、コミュニケーションと可観測性に様々な制約を課すことによって、問題を悪化させる。
値ベースの手法では、最適な値関数を正確に表現することが課題となる。
政策勾配法では、批判者の訓練を困難にし、遅れる批判者の問題を悪化させる。
学習理論の観点からは、関連するアクション値関数を正確に表現することで、両方の問題に対処できることが示される。
論文 参考訳(メタデータ) (2021-05-31T23:08:05Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
q$-learningの過大評価は、シングルエージェント強化学習で広く研究されている重要な問題である。
ベースラインから逸脱する大きな関節動作値をペナライズする,新たな正規化ベースの更新方式を提案する。
本手法は,StarCraft IIマイクロマネジメントの課題に対して,一貫した性能向上を実現する。
論文 参考訳(メタデータ) (2021-03-22T14:18:39Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
FACtored Multi-Agent Centralized Policy gradients (FACMAC)を提案する。
離散的および連続的な行動空間における協調的マルチエージェント強化学習のための新しい手法である。
我々は,マルチエージェント粒子環境の変動に対するFACMAC,新しいマルチエージェント MuJoCo ベンチマーク,およびStarCraft II マイクロマネジメントタスクの挑戦的セットについて評価した。
論文 参考訳(メタデータ) (2020-03-14T21:29:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。