論文の概要: Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2404.03227v1
- Date: Thu, 4 Apr 2024 06:24:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 15:43:35.604002
- Title: Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークを用いた推定誤差最小化のための分散学習手法
- Authors: Xingran Chen, Navid NaderiAlizadeh, Alejandro Ribeiro, Shirin Saeedi Bidokhti,
- Abstract要約: 統計的に同一性を持つ無線ネットワークにおける自己回帰的マルコフ過程のサンプリングとリモート推定の課題に対処する。
我々のゴールは、分散化されたスケーラブルサンプリングおよび送信ポリシーを用いて、時間平均推定誤差と/または情報の年齢を最小化することである。
- 参考スコア(独自算出の注目度): 94.2860766709971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a multi-hop wireless network with statistically-identical agents. Agents cache the most recent samples from others and communicate over wireless collision channels governed by an underlying graph topology. Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies, considering both oblivious (where decision-making is independent of the physical processes) and non-oblivious policies (where decision-making depends on physical processes). We prove that in oblivious policies, minimizing estimation error is equivalent to minimizing the age of information. The complexity of the problem, especially the multi-dimensional action spaces and arbitrary network topologies, makes theoretical methods for finding optimal transmission policies intractable. We optimize the policies using a graphical multi-agent reinforcement learning framework, where each agent employs a permutation-equivariant graph neural network architecture. Theoretically, we prove that our proposed framework exhibits desirable transferability properties, allowing transmission policies trained on small- or moderate-size networks to be executed effectively on large-scale topologies. Numerical experiments demonstrate that (i) Our proposed framework outperforms state-of-the-art baselines; (ii) The trained policies are transferable to larger networks, and their performance gains increase with the number of agents; (iii) The training procedure withstands non-stationarity even if we utilize independent learning techniques; and, (iv) Recurrence is pivotal in both independent learning and centralized training and decentralized execution, and improves the resilience to non-stationarity in independent learning.
- Abstract(参考訳): 統計的に同一性を持つマルチホップ無線ネットワークにおける自動回帰マルコフ過程のサンプリングとリモート推定の課題に対処する。
エージェントは最新のサンプルを他の人からキャッシュし、基礎となるグラフトポロジーによって管理される無線衝突チャネルを介して通信する。
我々のゴールは、(意思決定が物理的プロセスに依存しない)難易度(意思決定が物理的プロセスに依存している)と(意思決定が物理的プロセスに依存している)非報知度の両方を考慮して、分散されたスケーラブルなサンプリングおよび送信ポリシーを用いて、時間平均推定誤差および/または情報の年齢を最小化することである。
難解なポリシーでは、推定誤差の最小化は情報の年齢の最小化と等価であることを示す。
問題の複雑さ、特に多次元のアクション空間と任意のネットワークトポロジは、最適な伝送ポリシーを見つける理論的方法を作成する。
グラフ多エージェント強化学習フレームワークを用いてポリシーを最適化し、各エージェントは置換同変グラフニューラルネットワークアーキテクチャを用いる。
理論的には,提案手法が望ましい転送性を示すことを証明し,小規模・中規模ネットワークで訓練された伝送ポリシーを大規模トポロジ上で効果的に実行できるようにする。
数値実験は
i)提案するフレームワークは,最先端のベースラインを上回っている。
(二)訓練された方針は、より大きなネットワークに転送することができ、エージェントの数に応じてその性能が向上する。
三 独立学習技術を利用した場合であっても、非定常性に耐える訓練方法、及び
(4)再帰は、独立学習と集中学習、分散実行の両方において重要であり、独立学習における非定常性に対するレジリエンスを向上させる。
関連論文リスト
- Differentiable Discrete Event Simulation for Queuing Network Control [7.965453961211742]
キューのネットワーク制御は、高い性、大きな状態とアクション空間、安定性の欠如など、異なる課題を生んでいる。
本稿では,異なる離散イベントシミュレーションに基づくポリシー最適化のためのスケーラブルなフレームワークを提案する。
本手法は,非定常環境で動作するシステムなど,現実的なシナリオを柔軟に処理することができる。
論文 参考訳(メタデータ) (2024-09-05T17:53:54Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
我々は新しいポリシー学習アルゴリズム PESsimistic CAusal Learning (PESCAL) を提案する。
我々のキーとなる観察は、システム力学における作用の効果を媒介する補助変数を組み込むことで、Q-関数の代わりに媒介物分布関数の下位境界を学習することは十分であるということである。
提案するアルゴリズムの理論的保証とシミュレーションによる有効性の実証、および主要な配車プラットフォームからのオフラインデータセットを利用した実世界の実験を提供する。
論文 参考訳(メタデータ) (2024-03-18T14:51:19Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
分散エージェントのネットワークによって達成可能な性能を導出し,通信制約や回帰問題を解消し,適応的に解決する。
エージェントによって最適化に必要なパラメータをオンラインで学習できる最適化アロケーション戦略を考案する。
論文 参考訳(メタデータ) (2023-04-07T13:41:08Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
本研究の目的は,モデルベース学習によるマルチエージェント制御のデータ効率の向上である。
エージェントが協力的であり、隣人とのみローカルに通信するネットワークシステムについて検討する。
提案手法では,各エージェントが将来の状態を予測し,通信によって予測をブロードキャストする動的モデルを学習し,その後,モデルロールアウトに基づいてポリシーをトレーニングする。
論文 参考訳(メタデータ) (2022-07-13T23:52:14Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
本研究では,個別のエージェントが異なる次元のストリーミング特徴を観察しながら分類問題の解決を目指す分散アーキテクチャを提案する。
私たちはそれを示します。
戦略により、エージェントはこの高度に異質な環境下で一貫して学習することができる。
私たちはそれを示します。
戦略により、エージェントはこの高度に異質な環境下で一貫して学習することができる。
論文 参考訳(メタデータ) (2021-12-17T12:47:18Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - Detection of Insider Attacks in Distributed Projected Subgradient
Algorithms [11.096339082411882]
汎用ニューラルネットワークは悪質なエージェントの検出とローカライズに特に適していることを示す。
本稿では,連合学習における最先端のアプローチ,すなわち協調型ピアツーピア機械学習プロトコルを採用することを提案する。
シミュレーションでは,AIに基づく手法の有効性と有効性を検証するために,最小二乗問題を考える。
論文 参考訳(メタデータ) (2021-01-18T08:01:06Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。