Improving sum uncertainty relations with the quantum Fisher information
- URL: http://arxiv.org/abs/2109.06900v2
- Date: Mon, 31 Jan 2022 19:05:22 GMT
- Title: Improving sum uncertainty relations with the quantum Fisher information
- Authors: Shao-Hen Chiew and Manuel Gessner
- Abstract summary: We show how preparation uncertainty relations that are formulated as sums of variances may be tightened by using the quantum Fisher information to quantify quantum fluctuations.
We illustrate how these results may be used to identify the classical and quantum limits on phase estimation precision with an unknown rotation axis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show how preparation uncertainty relations that are formulated as sums of
variances may be tightened by using the quantum Fisher information to quantify
quantum fluctuations. We apply this to derive stronger angular momentum
uncertainty relations, which in the case of spin-$1/2$ turn into equalities
involving the purity. Using an analogy between pure-state decompositions in the
Bloch sphere and the moment of inertia of rigid bodies, we identify optimal
decompositions that achieve the convex- and concave-roof decomposition of the
variance. Finally, we illustrate how these results may be used to identify the
classical and quantum limits on phase estimation precision with an unknown
rotation axis.
Related papers
- Uncertainty of quantum channels based on symmetrized \r{ho}-absolute variance and modified Wigner-Yanase skew information [6.724911333403243]
We present the uncertainty relations in terms of the symmetrized rho-absolute variance, which generalizes the uncertainty relations for arbitrary operator (not necessarily Hermitian) to quantum channels.
arXiv Detail & Related papers (2024-06-13T14:18:59Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.
The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - Model-Based Uncertainty in Value Functions [89.31922008981735]
We focus on characterizing the variance over values induced by a distribution over MDPs.
Previous work upper bounds the posterior variance over values by solving a so-called uncertainty Bellman equation.
We propose a new uncertainty Bellman equation whose solution converges to the true posterior variance over values.
arXiv Detail & Related papers (2023-02-24T09:18:27Z) - The identification of mean quantum potential with Fisher information
leads to a strong uncertainty relation [0.0]
The Cramer-Rao bound, satisfied by classical Fisher information, has been shown to give rise to the Heisenberg uncertainty principle of quantum mechanics.
We show that the identification of the mean quantum potential, an important notion in Bohmian mechanics, with the Fisher information, leads, through the Cramer-Rao bound, to an uncertainty principle which is stronger, in general, than both Heisenberg and Robertson-Schrodinger uncertainty relations.
arXiv Detail & Related papers (2022-10-14T12:03:51Z) - Quantifying Model Predictive Uncertainty with Perturbation Theory [21.591460685054546]
We propose a framework for predictive uncertainty quantification of a neural network.
We use perturbation theory from quantum physics to formulate a moment decomposition problem.
Our approach provides fast model predictive uncertainty estimates with much greater precision and calibration.
arXiv Detail & Related papers (2021-09-22T17:55:09Z) - Quantum uncertainty as classical uncertainty of real-deterministic
variables constructed from complex weak values and a global random variable [0.0]
We construct a class of real-deterministic c-valued variables out of the weak values obtained via a non-perturbing weak measurement of quantum operators.
We show that this class of c-valued physical quantities'' provides a real-deterministic contextual hidden variable model for the quantum expectation value of a certain class of operators.
arXiv Detail & Related papers (2021-06-21T22:43:26Z) - Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox [0.0]
The Einstein-Podolsky-Rosen paradox plays a fundamental role in our understanding of quantum mechanics.
It is associated with the possibility of predicting the results of non-commuting measurements with a precision that seems to violate the uncertainty principle.
This apparent contradiction to complementarity is made possible by nonclassical correlations stronger than entanglement, called steering.
arXiv Detail & Related papers (2020-09-17T17:46:44Z) - Quantum backflow in the presence of a purely transmitting defect [91.3755431537592]
We analyse the quantum backflow effect and extend it, as a limiting constraint to its spatial extent, for scattering situations.
We make the analysis compatible with conservation laws.
arXiv Detail & Related papers (2020-07-14T22:59:25Z) - Improved tripartite uncertainty relation with quantum memory [5.43508370077166]
Uncertainty principle is a striking and fundamental feature in quantum mechanics.
In quantum information theory, this uncertainty principle is popularly formulized in terms of entropy.
We present an improvement of tripartite quantum-memory-assisted entropic uncertainty relation.
arXiv Detail & Related papers (2020-04-09T03:54:51Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.