論文の概要: Automatically Exposing Problems with Neural Dialog Models
- arxiv url: http://arxiv.org/abs/2109.06950v1
- Date: Tue, 14 Sep 2021 20:00:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 15:08:45.090416
- Title: Automatically Exposing Problems with Neural Dialog Models
- Title(参考訳): ニューラルダイアログモデルによる問題の自動抽出
- Authors: Dian Yu and Kenji Sagae
- Abstract要約: 本稿では,問題応答を生成するためにダイアログモデルを自動的にトリガーする強化学習を提案する。
現状技術ダイアログモデルによる安全性と矛盾問題を明らかにする上で,本手法の有効性を示す。
- 参考スコア(独自算出の注目度): 13.759724523577336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural dialog models are known to suffer from problems such as generating
unsafe and inconsistent responses. Even though these problems are crucial and
prevalent, they are mostly manually identified by model designers through
interactions. Recently, some research instructs crowdworkers to goad the bots
into triggering such problems. However, humans leverage superficial clues such
as hate speech, while leaving systematic problems undercover. In this paper, we
propose two methods including reinforcement learning to automatically trigger a
dialog model into generating problematic responses. We show the effect of our
methods in exposing safety and contradiction issues with state-of-the-art
dialog models.
- Abstract(参考訳): ニューラルダイアログモデルは、安全で一貫性のない応答を生成するなどの問題に苦しむことが知られている。
これらの問題は重要かつ普及しているが、ほとんどは相互作用を通じてモデルデザイナーによって手動で識別される。
最近、一部の研究は、群集にボットを駆使して問題を引き起こすよう指示している。
しかし、人間はヘイトスピーチのような表面的な手がかりを活用し、体系的な問題が潜んでいる。
本稿では,ダイアログモデルを自動的に起動して問題のある応答を生成する強化学習法を提案する。
本手法は,最先端のダイアログモデルにおける安全性と矛盾の顕在化における効果を示す。
関連論文リスト
- A Cause-Effect Look at Alleviating Hallucination of Knowledge-grounded Dialogue Generation [51.53917938874146]
我々は,対話知識の相互作用を利用して,KGDの幻覚を緩和するための解決策を提案する。
本手法は,他の対話性能を損なうことなく幻覚を低減できることを示す。
論文 参考訳(メタデータ) (2024-04-04T14:45:26Z) - Improving Dialog Safety using Socially Aware Contrastive Learning [8.503001932363704]
対人・カジュアル・ダイアログの文脈における社会性について検討する。
これらの問題に対処するための2段階の微調整プロセスを提案する。
私たちは、Moral Integrity Corpus(MIC)やProsocialDialogといったデータセットを活用することで、社会行動を統合するベースモデルをトレーニングします。
論文 参考訳(メタデータ) (2024-02-01T09:24:33Z) - Are cascade dialogue state tracking models speaking out of turn in
spoken dialogues? [1.786898113631979]
本稿では,対話状態追跡のような複雑な環境下でのアートシステムのエラーを包括的に解析する。
音声MultiWozに基づいて、音声対話システムとチャットベースの対話システムとのギャップを埋めるためには、非カテゴリースロットの値の誤差に対処することが不可欠である。
論文 参考訳(メタデータ) (2023-11-03T08:45:22Z) - Position Matters! Empirical Study of Order Effect in Knowledge-grounded
Dialogue [54.98184262897166]
本稿では,知識集合の順序が自己回帰対話システムの応答にどのように影響するかを検討する。
本稿では,知識入力の位置埋め込みを変更することで,注文効果を緩和する,シンプルで斬新な手法を提案する。
論文 参考訳(メタデータ) (2023-02-12T10:13:00Z) - Manual-Guided Dialogue for Flexible Conversational Agents [84.46598430403886]
対話データを効率的に構築し、利用する方法や、さまざまなドメインにモデルを大規模にデプロイする方法は、タスク指向の対話システムを構築する上で重要な問題である。
エージェントは対話とマニュアルの両方からタスクを学習する。
提案手法は,詳細なドメインオントロジーに対する対話モデルの依存性を低減し,様々なドメインへの適応をより柔軟にする。
論文 参考訳(メタデータ) (2022-08-16T08:21:12Z) - The Adapter-Bot: All-In-One Controllable Conversational Model [66.48164003532484]
本稿では、DialGPTなどの固定バックボーンモデルを用いて、異なるアダプタを介してオンデマンド対話スキルをトリガーする対話モデルを提案する。
スキルに応じて、モデルはテキスト、テーブル、強調応答などの複数の知識タイプを処理できる。
我々は,既存の会話モデルと比較し,自動評価を用いたモデルの評価を行った。
論文 参考訳(メタデータ) (2020-08-28T10:59:31Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
対話履歴を効果的に活用する方法は、マルチターン対話生成において重要な問題である。
これまでの研究は通常、歴史をモデル化するために様々なニューラルネットワークアーキテクチャを使用していた。
本稿では,ランキング拡張対話生成フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-13T01:49:56Z) - Probing Neural Dialog Models for Conversational Understanding [21.76744391202041]
ニューラルオープンドメインダイアログシステムで学習した内部表現を解析する。
この結果から,標準のオープンドメインダイアログシステムでは解答が困難であることが示唆された。
また、ダイアログのダイアログ的ターンテイク性は、これらのモデルによって完全に活用されていないことも判明した。
論文 参考訳(メタデータ) (2020-06-07T17:32:00Z) - Knowledge Injection into Dialogue Generation via Language Models [85.65843021510521]
InjKは対話生成モデルに知識を注入するための2段階のアプローチである。
まず、大規模言語モデルをトレーニングし、テキスト知識としてクエリする。
次に、対話生成モデルを作成し、テキスト知識と対応する応答を逐次生成する。
論文 参考訳(メタデータ) (2020-04-30T07:31:24Z) - Teaching Machines to Converse [24.64148203917298]
この論文は、オープンドメイン対話生成システムにおけるニューラルネットワークモデルによる課題に対処しようとするものである。
我々は,対話型質問応答システムを開発するために,対話型質問応答システムを開発した。
論文 参考訳(メタデータ) (2020-01-31T08:28:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。