論文の概要: The Promise of Dataflow Architectures in the Design of Processing
Systems for Autonomous Machines
- arxiv url: http://arxiv.org/abs/2109.07047v1
- Date: Wed, 15 Sep 2021 01:58:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 14:51:11.199229
- Title: The Promise of Dataflow Architectures in the Design of Processing
Systems for Autonomous Machines
- Title(参考訳): 自律機械処理システム設計におけるデータフローアーキテクチャの約束
- Authors: Shaoshan Liu, Yuhao Zhu, Bo Yu, Jean-Luc Gaudiot, Guang R. Gao
- Abstract要約: 自律機械の商業化は繁栄する分野である。
自律機械に適したコンピュータアーキテクチャが欠落している。
我々は、自律機械におけるデータフローアーキテクチャの約束について論じる。
- 参考スコア(独自算出の注目度): 8.224882917648472
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The commercialization of autonomous machines is a thriving sector, and likely
to be the next major computing demand driver, after PC, cloud computing, and
mobile computing. Nevertheless, a suitable computer architecture for autonomous
machines is missing, and many companies are forced to develop ad hoc computing
solutions that are neither scalable nor extensible. In this article, we analyze
the demands of autonomous machine computing, and argue for the promise of
dataflow architectures in autonomous machines.
- Abstract(参考訳): 自律機械の商業化は繁栄する分野であり、PC、クラウドコンピューティング、モバイルコンピューティングに続く次の主要なコンピューティング需要の原動力になる可能性が高い。
それでも、自律機械に適したコンピュータアーキテクチャは欠落しており、多くの企業は拡張性も拡張性もないアドホックコンピューティングソリューションの開発を余儀なくされている。
本稿では、自律的マシンコンピューティングの需要を分析し、自律的マシンにおけるデータフローアーキテクチャの期待について論じる。
関連論文リスト
- Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
AI統合製品の製造者は、製品のパフォーマンス要件に適合するアクセラレータを選択するという、重大な課題に直面します。
抽象コンピュータアーキテクチャ記述言語(ACADL)は、コンピュータアーキテクチャブロック図の簡潔な形式化である。
本稿では,AIハードウェアアクセラレーションのモデル化にACADLを用いること,DNNのマッピングにACADL記述を使用し,タイミングシミュレーションのセマンティクスを解説し,性能評価結果の収集を行う。
論文 参考訳(メタデータ) (2024-01-30T19:27:16Z) - Hardware Accelerators in Autonomous Driving [5.317893030884531]
ハードウェアアクセラレーターは、自動運転車がより高いレベルの自律性のためにパフォーマンス要件を満たすのを助ける特別な目的のコプロセッサである。
本稿では,MLアクセラレータの概要と,自律走行車におけるマシンビジョンの利用例を紹介する。
論文 参考訳(メタデータ) (2023-08-11T10:07:33Z) - Integrating Homomorphic Encryption and Trusted Execution Technology for
Autonomous and Confidential Model Refining in Cloud [4.21388107490327]
同型暗号化と信頼性の高い実行環境技術は、自律的な計算の機密性を保護することができる。
モデル精錬方式の設計にこれらの2つの手法を統合することを提案する。
論文 参考訳(メタデータ) (2023-08-02T06:31:41Z) - Physical Computing for Materials Acceleration Platforms [81.09376948478891]
我々は、MAPs研究プログラムの一環として、新しい素材の探索を加速する同じシミュレーションとAIツールが、根本的に新しいコンピュータ媒体の設計を可能にすると論じている。
シミュレーションに基づくMAPプログラムの概要を述べる。
我々は、材料研究者と計算機科学者の革新的なコラボレーションの新たな時代を導入することを期待している。
論文 参考訳(メタデータ) (2022-08-17T23:03:54Z) - Future Computer Systems and Networking Research in the Netherlands: A
Manifesto [137.47124933818066]
我々はICTの重要部分としてCompSysに注目している。
オランダ経済のトップセクター、国家研究アジェンダの各ルート、国連持続可能な開発目標の各ルートは、コンプシーズの進歩なしには対処できない課題を提起する。
論文 参考訳(メタデータ) (2022-05-26T11:02:29Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Molecular Dynamics Simulations on Cloud Computing and Machine Learning
Platforms [0.8093262393618671]
我々は、科学計算アプリケーションの計算構造、設計、要求のパラダイムシフトを見る。
データ駆動型と機械学習のアプローチは、科学計算アプリケーションをサポートし、スピードアップし、拡張するために使用されています。
クラウドコンピューティングプラットフォームは、科学コンピューティングにますますアピールしている。
論文 参考訳(メタデータ) (2021-11-11T21:20:26Z) - Machine Learning-Based Automated Design Space Exploration for Autonomous
Aerial Robots [55.056709056795206]
自律飛行ロボットのためのドメイン固有のアーキテクチャの構築は、オンボードコンピューティングを設計するための体系的な方法論が欠如しているため、難しい。
F-1ルーフラインと呼ばれる新しいパフォーマンスモデルを導入し、アーキテクトがバランスの取れたコンピューティングシステムを構築する方法を理解するのを助ける。
サイバー物理設計空間を自動でナビゲートするために、AutoPilotを導入します。
論文 参考訳(メタデータ) (2021-02-05T03:50:54Z) - Cloud2Edge Elastic AI Framework for Prototyping and Deployment of AI
Inference Engines in Autonomous Vehicles [1.688204090869186]
本稿では、ディープラーニングモジュールに基づく自律運転アプリケーションのためのAI推論エンジンを開発するための新しいフレームワークを提案する。
我々は,ソフトウェア・イン・ザ・ループ(SiL)パラダイムに従って,クラウド上でプロトタイピングを行うAIコンポーネント開発サイクルに対して,シンプルでエレガントなソリューションを導入する。
提案フレームワークの有効性は,自律走行車用AI推論エンジンの2つの実例を用いて実証した。
論文 参考訳(メタデータ) (2020-09-23T09:23:29Z) - KubeEdge.AI: AI Platform for Edge Devices [4.337396433660794]
KubeEdge.AIはKubeEdge上のエッジAIフレームワークである。
データ処理と処理エンジン、簡潔なAIランタイム、決定エンジン、分散データクエリインターフェースなど、主要なモジュールとインターフェースのセットを提供する。
論文 参考訳(メタデータ) (2020-07-07T23:36:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。