Differentiable Physics: A Position Piece
- URL: http://arxiv.org/abs/2109.07573v1
- Date: Tue, 14 Sep 2021 15:08:54 GMT
- Title: Differentiable Physics: A Position Piece
- Authors: Bharath Ramsundar and Dilip Krishnamurthy and Venkatasubramanian
Viswanathan
- Abstract summary: We argue that differentiable physics offers a new paradigm for modeling physical phenomena by combining classical analytic solutions with numerical methodology using the bridge of differentiable programming.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentiable physics provides a new approach for modeling and understanding
the physical systems by pairing the new technology of differentiable
programming with classical numerical methods for physical simulation. We survey
the rapidly growing literature of differentiable physics techniques and
highlight methods for parameter estimation, learning representations, solving
differential equations, and developing what we call scientific foundation
models using data and inductive priors. We argue that differentiable physics
offers a new paradigm for modeling physical phenomena by combining classical
analytic solutions with numerical methodology using the bridge of
differentiable programming.
Related papers
- Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models [2.8720819157502344]
This paper presents a generic approach based on a novel physics-encoded residual neural network architecture.
Our method combines physics blocks as mathematical operators from physics-based models with learning blocks comprising feed-forward layers.
Compared to conventional neural network-based methods, our method improves generalizability with substantially low data requirements.
arXiv Detail & Related papers (2024-11-18T11:58:20Z) - Integrating Physics-Informed Deep Learning and Numerical Methods for Robust Dynamics Discovery and Parameter Estimation [0.0]
In this work, we combine deep learning techniques and classic numerical methods for differential equations to solve two challenging problems in dynamical systems theory.
Results demonstrate the effectiveness of the proposed approaches on a suite of test problems exhibiting chaotic dynamics.
arXiv Detail & Related papers (2024-10-05T22:40:02Z) - Differentiable Programming for Differential Equations: A Review [36.67198631261628]
Differentiable programming is a cornerstone of modern scientific computing.
Differentiating functions based on the numerical solution of differential equations is non-trivial.
We provide a comprehensive review of existing techniques to compute derivatives of numerical solutions of differential equations.
arXiv Detail & Related papers (2024-06-14T03:54:25Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
We introduce PHYRECON, the first approach to leverage both differentiable rendering and differentiable physics simulation to learn implicit surface representations.
Central to this design is an efficient transformation between SDF-based implicit representations and explicit surface points.
Our results also exhibit superior physical stability in physical simulators, with at least a 40% improvement across all datasets.
arXiv Detail & Related papers (2024-04-25T15:06:58Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
We introduce a technique with which it is possible to learn approximate solutions to the steady-state Navier--Stokes equations in varying geometries without the need of parametrization.
The results of our physics-aware CNN are compared to a state-of-the-art data-based approach.
arXiv Detail & Related papers (2023-08-04T05:09:06Z) - Differentiable physics-enabled closure modeling for Burgers' turbulence [0.0]
We discuss an approach using the differentiable physics paradigm that combines known physics with machine learning to develop closure models for turbulence problems.
We train a series of models that incorporate varying degrees of physical assumptions on an a posteriori loss function to test the efficacy of models.
We find that constraining models with inductive biases in the form of partial differential equations that contain known physics or existing closure approaches produces highly data-efficient, accurate, and generalizable models.
arXiv Detail & Related papers (2022-09-23T14:38:01Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes [9.119424247289857]
Differentiable physics is a powerful tool in computer and robotics for scene understanding and reasoning about interactions.
Existing approaches have frequently been limited to objects with simple shape or shapes that are in advance.
arXiv Detail & Related papers (2021-11-30T11:56:24Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Scalable Differentiable Physics for Learning and Control [99.4302215142673]
Differentiable physics is a powerful approach to learning and control problems that involve physical objects and environments.
We develop a scalable framework for differentiable physics that can support a large number of objects and their interactions.
arXiv Detail & Related papers (2020-07-04T19:07:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.