論文の概要: Personalized Federated Learning for Heterogeneous Clients with Clustered
Knowledge Transfer
- arxiv url: http://arxiv.org/abs/2109.08119v1
- Date: Thu, 16 Sep 2021 17:13:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-17 15:50:02.881928
- Title: Personalized Federated Learning for Heterogeneous Clients with Clustered
Knowledge Transfer
- Title(参考訳): クラスタ化された知識伝達を伴う異種顧客のための個人化フェデレーション学習
- Authors: Yae Jee Cho, Jianyu Wang, Tarun Chiruvolu, Gauri Joshi
- Abstract要約: PerFed-CKT では,クライアントが異種モデルを利用することができ,モデルパラメータを直接通信することができない。
PerFed-CKTは、最先端のパーソナライズされたFL方式と比較して、数桁の通信コストで高いテスト精度を実現する。
- 参考スコア(独自算出の注目度): 25.041895804188748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized federated learning (FL) aims to train model(s) that can perform
well for individual clients that are highly data and system heterogeneous. Most
work in personalized FL, however, assumes using the same model architecture at
all clients and increases the communication cost by sending/receiving models.
This may not be feasible for realistic scenarios of FL. In practice, clients
have highly heterogeneous system-capabilities and limited communication
resources. In our work, we propose a personalized FL framework, PerFed-CKT,
where clients can use heterogeneous model architectures and do not directly
communicate their model parameters. PerFed-CKT uses clustered co-distillation,
where clients use logits to transfer their knowledge to other clients that have
similar data-distributions. We theoretically show the convergence and
generalization properties of PerFed-CKT and empirically show that PerFed-CKT
achieves high test accuracy with several orders of magnitude lower
communication cost compared to the state-of-the-art personalized FL schemes.
- Abstract(参考訳): パーソナライズド・フェデレーション・ラーニング(FL)は、高いデータと不均一なシステムを持つ個々のクライアントに対してうまく機能するモデルを訓練することを目的としている。
しかし、パーソナライズされたflの作業の多くは、すべてのクライアントで同じモデルアーキテクチャを使用することを前提としており、モデルの送受信によって通信コストを増加させる。
これはflの現実的なシナリオでは実現不可能かもしれない。
実際には、クライアントは非常に異質なシステム能力を持ち、通信リソースが限られている。
本研究では、クライアントが異種モデルアーキテクチャを使用でき、モデルパラメータを直接通信できないパーソナライズされたFLフレームワークPerFed-CKTを提案する。
PerFed-CKTはクラスタ化された共蒸留を使用しており、クライアントはロジットを使用して知識を同様のデータ分散を持つ他のクライアントに転送する。
perfed-cktの収束特性と一般化特性を理論的に示し,perfed-cktは最先端のパーソナライズfl方式に比べて数桁低い通信コストで高いテスト精度を達成できることを実証的に示した。
関連論文リスト
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
パーソナライズドラーニング(PFL)のための新しいGAN(Generative Adversarial Network)の共有と集約戦略を提案する。
PFL-GANは、異なるシナリオにおけるクライアントの不均一性に対処する。より具体的には、まずクライアント間の類似性を学び、次に重み付けされた協調データアグリゲーションを開発する。
いくつかのよく知られたデータセットに対する厳密な実験による実験結果は、PFL-GANの有効性を示している。
論文 参考訳(メタデータ) (2023-08-23T22:38:35Z) - FedJETs: Efficient Just-In-Time Personalization with Federated Mixture
of Experts [48.78037006856208]
FedJETsは、Federated Learning(FL)セットアップ内でMixture-of-Experts(MoE)フレームワークを使用することで、新しいソリューションである。
我々の方法は、クライアントの多様性を活用して、クラスのサブセットの異なる専門家を訓練し、最も関係のある専門家に入力をルーティングするゲーティング機能を提供します。
我々の手法は、競争力のあるゼロショット性能を維持しながら、アートFL設定時の精度を最大18%向上させることができる。
論文 参考訳(メタデータ) (2023-06-14T15:47:52Z) - Efficient Personalized Federated Learning via Sparse Model-Adaptation [47.088124462925684]
Federated Learning (FL)は、複数のクライアントに対して、独自のプライベートデータを共有せずに機械学習モデルをトレーニングすることを目的としている。
疎局所モデルを適応的かつ効率的に学習し,効率的なパーソナライズFLのためのpFedGateを提案する。
我々は,pFedGateが最先端手法よりも優れたグローバル精度,個人精度,効率性を同時に達成できることを示す。
論文 参考訳(メタデータ) (2023-05-04T12:21:34Z) - FedGH: Heterogeneous Federated Learning with Generalized Global Header [16.26231633749833]
フェデレートラーニング(Federated Learning, FL)は、複数のパーティが共有モデルをトレーニングできる、新興の機械学習パラダイムである。
本稿では,FedGH(Federated Global Prediction Header)アプローチを提案する。
FedGHは、クライアントモデルのための異種抽出器による表現で、共通化されたグローバルな予測ヘッダーを訓練する。
論文 参考訳(メタデータ) (2023-03-23T09:38:52Z) - FedCliP: Federated Learning with Client Pruning [3.796320380104124]
フェデレートラーニング(Federated Learning、FL)は、新たな分散ラーニングパラダイムである。
FLの基本的なボトルネックの1つは、分散クライアントと中央サーバの間の通信オーバーヘッドである。
マクロの観点から,最初の通信効率のよいFLトレーニングフレームワークであるFedCliPを提案する。
論文 参考訳(メタデータ) (2023-01-17T09:15:37Z) - PGFed: Personalize Each Client's Global Objective for Federated Learning [7.810284483002312]
本稿では,各クライアントが自身のグローバルな目的をパーソナライズ可能な,パーソナライズされたFLフレームワークを提案する。
大規模な(O(N2))通信オーバーヘッドと潜在的なプライバシリークを回避するため、各クライアントのリスクは、他のクライアントの適応的リスクアグリゲーションの1次近似によって推定される。
異なるフェデレーション条件下での4つのデータセットに対する実験により,従来の最先端手法よりも一貫したPGFの改良が示された。
論文 参考訳(メタデータ) (2022-12-02T21:16:39Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するフェデレーション学習のためのゲーム理論フレームワークFL GAMESを提案する。
論文 参考訳(メタデータ) (2022-10-31T22:59:03Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
フェデレートラーニング(FL)は、エッジデバイスがプライベートデータを中央集約サーバに公開することなく、協調的にモデルを学習することを可能にする。
既存のFLアルゴリズムの多くは、クライアントとサーバにまたがってデプロイされるのと同じアーキテクチャのモデルを必要とする。
本稿では,Fed-ETと呼ばれる新しいアンサンブル知識伝達手法を提案する。
論文 参考訳(メタデータ) (2022-04-27T05:18:32Z) - No One Left Behind: Inclusive Federated Learning over Heterogeneous
Devices [79.16481453598266]
この問題に対処するクライアント包摂的フェデレーション学習手法であるInclusiveFLを提案する。
InclusiveFLの中核となる考え方は、異なるサイズのモデルを異なる計算能力を持つクライアントに割り当てることである。
また,異なる大きさの複数の局所モデル間で知識を共有する効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T13:03:27Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
そこで我々は,各クライアントが他のクライアントと連携して,クライアント固有の目的ごとのより強力なモデルを得る,フェデレーション学習の代替案を提案する。
基礎となるデータ分布やクライアントの類似性に関する知識を前提とせず、各クライアントが関心のある任意のターゲット分布を最適化できるようにします。
この手法は既存の代替品を上回り、ローカルデータ配信以外の転送のようなパーソナライズされたFLの新機能を可能にする。
論文 参考訳(メタデータ) (2020-12-15T19:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。