Quantum message-passing algorithm for optimal and efficient decoding
- URL: http://arxiv.org/abs/2109.08170v3
- Date: Wed, 10 Apr 2024 07:31:14 GMT
- Title: Quantum message-passing algorithm for optimal and efficient decoding
- Authors: Christophe Piveteau, Joseph M. Renes,
- Abstract summary: We expand the understanding, formalism, and applicability of the BPQM algorithm.
We provide the first formal description of the BPQM algorithm in full detail and without any ambiguity.
We show some promising numerical results that indicate that BPQM on factor graphs with cycles can significantly outperform the best possible classical decoder.
- Score: 2.3020018305241328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, Renes proposed a quantum algorithm called belief propagation with quantum messages (BPQM) for decoding classical data encoded using a binary linear code with tree Tanner graph that is transmitted over a pure-state CQ channel [Renes, NJP 19 072001 (2017)]. The algorithm presents a genuine quantum counterpart to decoding based on the classical belief propagation algorithm, which has found wide success in classical coding theory when used in conjunction with LDPC or Turbo codes. More recently Rengaswamy et al. [npj Quantum Information 7 97 (2021)] observed that BPQM implements the optimal decoder on a small example code. Here we significantly expand the understanding, formalism, and applicability of the BPQM algorithm with the following contributions. First, we prove analytically that BPQM realizes optimal decoding for any binary linear code with tree Tanner graph. We also provide the first formal description of the BPQM algorithm in full detail and without any ambiguity. In so doing, we identify a key flaw overlooked in the original algorithm and subsequent works which implies quantum circuit realizations will be exponentially large in the code dimension. Although BPQM passes quantum messages, other information required by the algorithm is processed globally. We remedy this problem by formulating a truly message-passing algorithm which approximates BPQM and has quantum circuit complexity $\mathcal{O}(\text{poly } n, \text{polylog } \frac{1}{\epsilon})$, where $n$ is the code length and $\epsilon$ is the approximation error. Finally, we also propose a novel method for extending BPQM to factor graphs containing cycles by making use of approximate cloning. We show some promising numerical results that indicate that BPQM on factor graphs with cycles can significantly outperform the best possible classical decoder.
Related papers
- Quantum Lego Expansion Pack: Enumerators from Tensor Networks [1.489619600985197]
We provide the first tensor network method for computing quantum weight enumerators in the most general form.
For non-(Pauli)-stabilizer codes, this constitutes the current best algorithm for computing the code distance.
We show that these enumerators can be used to compute logical error rates exactly and thus construct decoders for any i.i.d. single qubit or qudit error channels.
arXiv Detail & Related papers (2023-08-09T18:00:02Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation.
For some problems, the ability to perform adaptive measurements in a single shallow quantum circuit is more useful than the ability to perform many shallow quantum circuits without adaptive measurements.
arXiv Detail & Related papers (2022-10-12T17:54:02Z) - Quantum Sparse Coding [5.130440339897477]
We develop a quantum-inspired algorithm for sparse coding.
The emergence of quantum computers and Ising machines can potentially lead to more accurate estimations.
We conduct numerical experiments with simulated data on Lightr's quantum-inspired digital platform.
arXiv Detail & Related papers (2022-09-08T13:00:30Z) - Belief Propagation with Quantum Messages for Symmetric Classical-Quantum
Channels [6.831109886531548]
In 2016, Renes introduced a belief propagation with quantum messages (BPQM)
We propose an extension of BPQM to general binary-input symmetric classical-quantum (BSCQ) channels based on the implementation of a symmetric "paired measurement"
arXiv Detail & Related papers (2022-07-11T16:14:49Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Log-domain decoding of quantum LDPC codes over binary finite fields [4.340338299803562]
We study the decoding of quantum low-density parity-check (LDPC) codes over binary finite fields GF$(q=2l)$ by the sum-product algorithm, also known as belief propagation (BP)
We show that scalar messages suffice for BP decoding of nonbinary quantum codes, rather than vector messages necessary for the conventional BP.
arXiv Detail & Related papers (2021-04-01T07:15:41Z) - Classical Coding Approaches to Quantum Applications [2.5382095320488665]
In deep-space optical communications, current receivers for the pure-state-quantum channel first measure each qubit channel output and then classically post-process the measurements.
In this dissertation we investigate a recently proposed quantum algorithm for this task, which is inspired by classical belief-propagation algorithms.
We show that the algorithm is optimal for each bit and it appears to achieve optimal performance when deciding the full transmitted message.
arXiv Detail & Related papers (2020-04-14T23:31:46Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Pruning Neural Belief Propagation Decoders [77.237958592189]
We introduce a method to tailor an overcomplete parity-check matrix to (neural) BP decoding using machine learning.
We achieve performance within 0.27 dB and 1.5 dB of the ML performance while reducing the complexity of the decoder.
arXiv Detail & Related papers (2020-01-21T12:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.