Neural Network Based Lidar Gesture Recognition for Realtime Robot
Teleoperation
- URL: http://arxiv.org/abs/2109.08263v1
- Date: Fri, 17 Sep 2021 00:49:31 GMT
- Title: Neural Network Based Lidar Gesture Recognition for Realtime Robot
Teleoperation
- Authors: Simon Chamorro, Jack Collier, Fran\c{c}ois Grondin
- Abstract summary: We propose a novel low-complexity lidar gesture recognition system for mobile robot control.
The system is lightweight and suitable for mobile robot control with limited computing power.
The use of lidar contributes to the robustness of the system, allowing it to operate in most outdoor conditions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel low-complexity lidar gesture recognition system for mobile
robot control robust to gesture variation. Our system uses a modular approach,
consisting of a pose estimation module and a gesture classifier. Pose estimates
are predicted from lidar scans using a Convolutional Neural Network trained
using an existing stereo-based pose estimation system. Gesture classification
is accomplished using a Long Short-Term Memory network and uses a sequence of
estimated body poses as input to predict a gesture. Breaking down the pipeline
into two modules reduces the dimensionality of the input, which could be lidar
scans, stereo imagery, or any other modality from which body keypoints can be
extracted, making our system lightweight and suitable for mobile robot control
with limited computing power. The use of lidar contributes to the robustness of
the system, allowing it to operate in most outdoor conditions, to be
independent of lighting conditions, and for input to be detected 360 degrees
around the robot. The lidar-based pose estimator and gesture classifier use
data augmentation and automated labeling techniques, requiring a minimal amount
of data collection and avoiding the need for manual labeling. We report
experimental results for each module of our system and demonstrate its
effectiveness by testing it in a real-world robot teleoperation setting.
Related papers
- Modular Neural Network Policies for Learning In-Flight Object Catching
with a Robot Hand-Arm System [55.94648383147838]
We present a modular framework designed to enable a robot hand-arm system to learn how to catch flying objects.
Our framework consists of five core modules: (i) an object state estimator that learns object trajectory prediction, (ii) a catching pose quality network that learns to score and rank object poses for catching, (iii) a reaching control policy trained to move the robot hand to pre-catch poses, and (iv) a grasping control policy trained to perform soft catching motions.
We conduct extensive evaluations of our framework in simulation for each module and the integrated system, to demonstrate high success rates of in-flight
arXiv Detail & Related papers (2023-12-21T16:20:12Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLoc is a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions.
Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets.
arXiv Detail & Related papers (2023-07-03T04:10:55Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
We demonstrate a hand gesture recognition system that uses signals from capacitive sensors embedded into the etee hand controller.
The controller generates real-time signals from each of the wearer five fingers.
We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms.
arXiv Detail & Related papers (2023-05-12T17:24:02Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - Visual-tactile sensing for Real-time liquid Volume Estimation in
Grasping [58.50342759993186]
We propose a visuo-tactile model for realtime estimation of the liquid inside a deformable container.
We fuse two sensory modalities, i.e., the raw visual inputs from the RGB camera and the tactile cues from our specific tactile sensor.
The robotic system is well controlled and adjusted based on the estimation model in real time.
arXiv Detail & Related papers (2022-02-23T13:38:31Z) - A System for Traded Control Teleoperation of Manipulation Tasks using
Intent Prediction from Hand Gestures [20.120263332724438]
This paper presents a teleoperation system that includes robot perception and intent prediction from hand gestures.
The perception module identifies the objects present in the robot workspace and the intent prediction module which object the user likely wants to grasp.
arXiv Detail & Related papers (2021-07-05T07:37:17Z) - In-air Knotting of Rope using Dual-Arm Robot based on Deep Learning [8.365690203298966]
We report the successful execution of in-air knotting of rope using a dual-arm two-finger robot based on deep learning.
A manual description of appropriate robot motions corresponding to all object states is difficult to be prepared in advance.
We constructed a model that instructed the robot to perform bowknots and overhand knots based on two deep neural networks trained using the data gathered from its sensorimotor.
arXiv Detail & Related papers (2021-03-17T02:11:58Z) - Counterfactual Explanation and Causal Inference in Service of Robustness
in Robot Control [15.104159722499366]
We propose an architecture for training generative models of counterfactual conditionals of the form, 'can we modify event A to cause B instead of C?'
In contrast to conventional control design approaches, where robustness is quantified in terms of the ability to reject noise, we explore the space of counterfactuals that might cause a certain requirement to be violated.
arXiv Detail & Related papers (2020-09-18T14:22:47Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Learning a generative model for robot control using visual feedback [7.171234436165255]
We introduce a novel formulation for incorporating visual feedback in controlling robots.
Inference in the model allows us to infer the robot state corresponding to target locations of the features.
We demonstrate the effectiveness of our method by executing grasping and tight-fit insertions on robots with inaccurate controllers.
arXiv Detail & Related papers (2020-03-10T00:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.