論文の概要: Carl-Lead: Lidar-based End-to-End Autonomous Driving with Contrastive
Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2109.08473v1
- Date: Fri, 17 Sep 2021 11:24:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-20 14:31:33.561431
- Title: Carl-Lead: Lidar-based End-to-End Autonomous Driving with Contrastive
Deep Reinforcement Learning
- Title(参考訳): Carl-Lead: 対照的な深層強化学習によるライダーによるエンドツーエンド自動運転
- Authors: Peide Cai, Sukai Wang, Hengli Wang, Ming Liu
- Abstract要約: 我々は、ライダーに基づくエンドツーエンドの運転ポリシーのトレーニングに、深層強化学習(DRL)を使用します。
本研究では、DRLを用いて、不完全な部分観察を自然に考慮するライダーベースのエンドツーエンド駆動ポリシーを訓練する。
提案手法は,最新技術(SOTA)によるエンド・ツー・エンド駆動ネットワークよりも高い成功率を達成する。
- 参考スコア(独自算出の注目度): 10.040113551761792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving in urban crowds at unregulated intersections is
challenging, where dynamic occlusions and uncertain behaviors of other vehicles
should be carefully considered. Traditional methods are heuristic and based on
hand-engineered rules and parameters, but scale poorly in new situations.
Therefore, they require high labor cost to design and maintain rules in all
foreseeable scenarios. Recently, deep reinforcement learning (DRL) has shown
promising results in urban driving scenarios. However, DRL is known to be
sample inefficient, and most previous works assume perfect observations such as
ground-truth locations and motions of vehicles without considering noises and
occlusions, which might be a too strong assumption for policy deployment. In
this work, we use DRL to train lidar-based end-to-end driving policies that
naturally consider imperfect partial observations. We further use unsupervised
contrastive representation learning as an auxiliary task to improve the sample
efficiency. The comparative evaluation results reveal that our method achieves
higher success rates than the state-of-the-art (SOTA) lidar-based end-to-end
driving network, better trades off safety and efficiency than the carefully
tuned rule-based method, and generalizes better to new scenarios than the
baselines. Demo videos are available at https://caipeide.github.io/carl-lead/.
- Abstract(参考訳): 非規制交差点における都市群集の自律運転は困難であり、他の車両の動的な閉塞や不確かさを慎重に考慮すべきである。
従来の手法はヒューリスティックであり、手作りのルールとパラメータに基づいているが、新しい状況ではスケールが貧弱である。
したがって、すべての予測可能なシナリオでルールを設計、維持するために高い労働コストを必要とする。
近年,深部強化学習(DRL)は都市交通のシナリオにおいて有望な成果を上げている。
しかし、DRLはサンプル非効率であることが知られており、これまでのほとんどの研究は、騒音や閉塞を考慮せずに、地上のトラックの位置や車両の動きなどの完全な観測を前提としている。
本研究では、DRLを用いて、不完全な部分観察を自然に考慮するライダーベースのエンドツーエンド駆動ポリシーを訓練する。
さらに,教師なしのコントラスト表現学習を補助タスクとして活用し,サンプル効率を向上させる。
比較評価の結果,本手法は最新lidar(sota)のエンド・ツー・エンド運転ネットワークよりも高い成功率を達成し,注意深く調整したルールベース方式よりも安全性と効率性が向上し,ベースラインよりも新しいシナリオへの一般化が図られた。
デモビデオはhttps://caipeide.github.io/carl-lead/で見ることができる。
関連論文リスト
- Learning Realistic Traffic Agents in Closed-loop [36.38063449192355]
強化学習(RL)は、違反を避けるために交通エージェントを訓練することができるが、RLのみを使用することで非人間的な運転行動をもたらす。
本稿では,交通規制制約の下で,専門家による実演と一致させるためにRTR(Reinforce Traffic Rules)を提案する。
実験の結果,RTRはより現実的で一般化可能な交通シミュレーションポリシーを学習することがわかった。
論文 参考訳(メタデータ) (2023-11-02T16:55:23Z) - Action and Trajectory Planning for Urban Autonomous Driving with
Hierarchical Reinforcement Learning [1.3397650653650457]
本稿では,階層型強化学習法(atHRL)を用いた行動・軌道プランナを提案する。
我々は、複雑な都市運転シナリオにおける広範な実験を通して、atHRLの有効性を実証的に検証した。
論文 参考訳(メタデータ) (2023-06-28T07:11:02Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
本研究は,学習エージェントの成功に対する異なるトレーニングベンチマーク設計の影響を分析した最初の実証的研究である。
複数ステップのルックアヘッドで計画を行うRLベースの駆動エージェントであるtrajectory value learning (TRAVL)を提案する。
実験の結果,TRAVLはすべてのベースラインと比較してより速く学習でき,安全な操作が可能であることがわかった。
論文 参考訳(メタデータ) (2023-06-27T17:58:39Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - DQ-GAT: Towards Safe and Efficient Autonomous Driving with Deep
Q-Learning and Graph Attention Networks [12.714551756377265]
従来の計画手法は概ねルールベースであり、複雑な動的シナリオではスケールが不十分である。
スケーラブルでプロアクティブな自動運転を実現するためにDQ-GATを提案する。
我々の手法は、見知らぬシナリオと見えないシナリオの両方において、安全と効率のトレードオフを改善することができる。
論文 参考訳(メタデータ) (2021-08-11T04:55:23Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
深層模倣強化学習(DIRL)は、視覚入力を使用してアジャイルな自律レースを実現する。
我々は,高忠実性運転シミュレーションと実世界の1/20スケールRC-car上での車載計算の制限により,本アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2021-07-18T00:00:48Z) - Learning to drive from a world on rails [78.28647825246472]
モデルベースアプローチによって,事前記録された運転ログからインタラクティブな視覚ベースの運転方針を学習する。
世界の前方モデルは、あらゆる潜在的な運転経路の結果を予測する運転政策を監督する。
提案手法は,carla リーダボードにまずランク付けし,40 倍少ないデータを用いて25%高い運転スコアを得た。
論文 参考訳(メタデータ) (2021-05-03T05:55:30Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z) - Behavior Planning at Urban Intersections through Hierarchical
Reinforcement Learning [25.50973559614565]
本研究では,都市環境の階層構造を用いた自律走行計画を行うことができる強化学習(RL)に基づく行動計画構造を提案する。
我々のアルゴリズムは、車線封鎖やエゴ車前方の遅延による交差点に近づく際に、車線変更の可能な方向から左に曲がるタイミングや、車線変更の可能性など、規則に基づく決定方法よりも優れている。
また,提案手法は従来のRL法よりも高速に最適方針に収束することを示した。
論文 参考訳(メタデータ) (2020-11-09T19:23:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。