論文の概要: Integrating Deep Reinforcement and Supervised Learning to Expedite
Indoor Mapping
- arxiv url: http://arxiv.org/abs/2109.08490v1
- Date: Fri, 17 Sep 2021 12:07:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-20 19:01:14.315483
- Title: Integrating Deep Reinforcement and Supervised Learning to Expedite
Indoor Mapping
- Title(参考訳): 屋内マッピングのための深層強化と教師付き学習の統合
- Authors: Elchanan Zwecher, Eran Iceland, Sean R. Levy, Shmuel Y. Hayoun, Oren
Gal, and Ariel Barel
- Abstract要約: その結果,両手法を組み合わせることで,フロンティアをベースとした移動計画に比べて最大75%のマッピング時間を短縮できることがわかった。
一つは、深層強化学習を用いて、運動プランナーを訓練することである。
2つ目は、事前訓練された生成深部ニューラルネットワークがマップ予測器として機能することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The challenge of mapping indoor environments is addressed. Typical heuristic
algorithms for solving the motion planning problem are frontier-based methods,
that are especially effective when the environment is completely unknown.
However, in cases where prior statistical data on the environment's
architectonic features is available, such algorithms can be far from optimal.
Furthermore, their calculation time may increase substantially as more areas
are exposed. In this paper we propose two means by which to overcome these
shortcomings. One is the use of deep reinforcement learning to train the motion
planner. The second is the inclusion of a pre-trained generative deep neural
network, acting as a map predictor. Each one helps to improve the decision
making through use of the learned structural statistics of the environment, and
both, being realized as neural networks, ensure a constant calculation time. We
show that combining the two methods can shorten the mapping time, compared to
frontier-based motion planning, by up to 75%.
- Abstract(参考訳): 屋内環境のマッピングの課題は解決される。
運動計画問題を解くための典型的なヒューリスティックアルゴリズムはフロンティアに基づく手法であり、環境が完全に未知である場合に特に有効である。
しかしながら、環境のアーキテクチャ的特徴に関する以前の統計データが利用可能である場合、そのようなアルゴリズムは最適とはほど遠い。
さらに、より多くの領域が露出するにつれて、計算時間が大幅に増加する可能性がある。
本稿では,これらの欠点を克服する2つの方法を提案する。
一つは、深層強化学習による運動プランナーの訓練である。
2つ目は、事前訓練された生成深部ニューラルネットワークがマップ予測器として機能することである。
それぞれが学習した環境構造統計を利用して意思決定を改善するのに役立ち、どちらもニューラルネットワークとして実現され、一定の計算時間を確保する。
両手法を組み合わせることで,フロンティアをベースとした移動計画に比べて最大75%短縮できることを示す。
関連論文リスト
- Rethinking Resource Management in Edge Learning: A Joint Pre-training and Fine-tuning Design Paradigm [87.47506806135746]
一部のアプリケーションでは、エッジラーニングは、スクラッチから新しい2段階ラーニングへと焦点を移している。
本稿では,2段階のエッジ学習システムにおける共同コミュニケーションと計算資源管理の問題について考察する。
事前学習および微調整段階に対する共同資源管理の提案は,システム性能のトレードオフをうまくバランスさせることが示されている。
論文 参考訳(メタデータ) (2024-04-01T00:21:11Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
我々は,エージェントが訓練中に学習する抽象的な検索空間において,エージェントが計画することを可能にする,PiZeroと呼ばれる新しい手法を提案する。
本研究では,旅行セールスマン問題,ソコバン問題,2048年,施設立地問題,パックマン問題など,複数の分野で評価を行った。
論文 参考訳(メタデータ) (2023-08-16T22:47:16Z) - PALMER: Perception-Action Loop with Memory for Long-Horizon Planning [1.5469452301122177]
PALMERと呼ばれる汎用計画アルゴリズムを導入する。
Palmerは古典的なサンプリングベースの計画アルゴリズムと学習に基づく知覚表現を組み合わせる。
これにより、表現学習、記憶、強化学習、サンプリングベースの計画の間に、緊密なフィードバックループが生成される。
論文 参考訳(メタデータ) (2022-12-08T22:11:49Z) - Thalamus: a brain-inspired algorithm for biologically-plausible
continual learning and disentangled representations [0.0]
動物は絶えず変化する環境の中で成長し、時間構造を利用して因果表現を学ぶ。
本稿では,時間的文脈の内部表現を生成するために,推論時に最適化を利用する単純なアルゴリズムを提案する。
従来の重み付け更新を用いて一連のタスクをトレーニングしたネットワークが,タスクを動的に推論できることを示す。
次に、ウェイト更新と潜伏更新を交互に切り替えて、未ラベルのタスクストリーム内の非絡み合った表現を発見することができるタスク非依存のアルゴリズムであるTalamusに到達します。
論文 参考訳(メタデータ) (2022-05-24T01:29:21Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Multi-Robot Active Mapping via Neural Bipartite Graph Matching [49.72892929603187]
本稿では,最小時間ステップにおけるシーンマップ構築の完全化を目的としたマルチロボットアクティブマッピングの問題点について検討する。
この問題の鍵は、より効率的なロボットの動きを可能にするゴール位置推定にある。
本稿では,ニューラルコマッピング(NeuralCoMapping)という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-30T14:03:17Z) - Reinforcement Learning-Based Coverage Path Planning with Implicit
Cellular Decomposition [5.2424255020469595]
本稿では,カバレッジ問題を体系的に解析し,最適な停止時間問題として定式化する。
本研究では,強化学習に基づくアルゴリズムが,未知の屋内環境を効果的にカバーしていることを示す。
論文 参考訳(メタデータ) (2021-10-18T05:18:52Z) - Accelerating Federated Edge Learning via Optimized Probabilistic Device
Scheduling [57.271494741212166]
本稿では,通信時間最小化問題を定式化し,解決する。
最適化されたポリシーは、トレーニングプロセスが進むにつれて、残りの通信ラウンドの抑制から、ラウンドごとのレイテンシの低減へと、徐々に優先順位を転換している。
提案手法の有効性は,自律運転における協調的3次元目標検出のユースケースを通じて実証される。
論文 参考訳(メタデータ) (2021-07-24T11:39:17Z) - Community detection using fast low-cardinality semidefinite programming [94.4878715085334]
局所的な更新を一般化し、ライデン-k-カットから導かれる半定緩和を最大化する、新しい低カルチナリティアルゴリズムを提案する。
提案アルゴリズムはスケーラビリティが高く,最先端のアルゴリズムより優れ,実時間では性能が向上し,追加コストがほとんどない。
論文 参考訳(メタデータ) (2020-12-04T15:46:30Z) - Domain Knowledge Empowered Structured Neural Net for End-to-End Event
Temporal Relation Extraction [44.95973272921582]
本稿では,確率的ドメイン知識によって構築された分布制約を持つディープニューラルネットワークを強化するフレームワークを提案する。
ラグランジアン緩和(Lagrangian Relaxation)により制約付き推論問題を解き、終端事象の時間的関係抽出タスクに適用する。
論文 参考訳(メタデータ) (2020-09-15T22:20:27Z) - Efficient Exploration in Constrained Environments with Goal-Oriented
Reference Path [15.679210057474922]
環境マップに基づいて衝突のない経路を予測できる深層畳み込みネットワークを訓練する。
これは強化学習アルゴリズムによって、経路を忠実に追従することを学ぶために使われる。
提案手法は,新しい環境へのサンプル効率と一般化能力を継続的に改善することを示す。
論文 参考訳(メタデータ) (2020-03-03T17:07:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。