Decentralized Global Connectivity Maintenance for Multi-Robot
Navigation: A Reinforcement Learning Approach
- URL: http://arxiv.org/abs/2109.08536v1
- Date: Fri, 17 Sep 2021 13:20:19 GMT
- Title: Decentralized Global Connectivity Maintenance for Multi-Robot
Navigation: A Reinforcement Learning Approach
- Authors: Minghao Li, Yingrui Jie, Yang Kong, Hui Cheng
- Abstract summary: This work investigates how to navigate a multi-robot team in unknown environments while maintaining connectivity.
We propose a reinforcement learning approach to develop a decentralized policy, which is shared among multiple robots.
We validate the effectiveness of the proposed approach by comparing different combinations of connectivity constraints and behavior cloning.
- Score: 12.649986200029717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of multi-robot navigation of connectivity maintenance is
challenging in multi-robot applications. This work investigates how to navigate
a multi-robot team in unknown environments while maintaining connectivity. We
propose a reinforcement learning (RL) approach to develop a decentralized
policy, which is shared among multiple robots. Given range sensor measurements
and the positions of other robots, the policy aims to generate control commands
for navigation and preserve the global connectivity of the robot team. We
incorporate connectivity concerns into the RL framework as constraints and
introduce behavior cloning to reduce the exploration complexity of policy
optimization. The policy is optimized with all transition data collected by
multiple robots in random simulated scenarios. We validate the effectiveness of
the proposed approach by comparing different combinations of connectivity
constraints and behavior cloning. We also show that our policy can generalize
to unseen scenarios in both simulation and holonomic robots experiments.
Related papers
- Multi-Robot Informative Path Planning for Efficient Target Mapping using Deep Reinforcement Learning [11.134855513221359]
We propose a novel deep reinforcement learning approach for multi-robot informative path planning.
We train our reinforcement learning policy via the centralized training and decentralized execution paradigm.
Our approach outperforms other state-of-the-art multi-robot target mapping approaches by 33.75% in terms of the number of discovered targets-of-interest.
arXiv Detail & Related papers (2024-09-25T14:27:37Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Co-NavGPT: Multi-Robot Cooperative Visual Semantic Navigation using
Large Language Models [10.312968200748118]
Co-NavGPT is an innovative framework that integrates Large Language Models as a global planner for multi-robot cooperative visual target navigation.
It encodes the explored environment data into prompts, enhancing LLMs' scene comprehension.
It then assigns exploration frontiers to each robot for efficient target search.
arXiv Detail & Related papers (2023-10-11T23:17:43Z) - Robot Fleet Learning via Policy Merging [58.5086287737653]
We propose FLEET-MERGE to efficiently merge policies in the fleet setting.
We show that FLEET-MERGE consolidates the behavior of policies trained on 50 tasks in the Meta-World environment.
We introduce a novel robotic tool-use benchmark, FLEET-TOOLS, for fleet policy learning in compositional and contact-rich robot manipulation tasks.
arXiv Detail & Related papers (2023-10-02T17:23:51Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Polybot: Training One Policy Across Robots While Embracing Variability [70.74462430582163]
We propose a set of key design decisions to train a single policy for deployment on multiple robotic platforms.
Our framework first aligns the observation and action spaces of our policy across embodiments via utilizing wrist cameras.
We evaluate our method on a dataset collected over 60 hours spanning 6 tasks and 3 robots with varying joint configurations and sizes.
arXiv Detail & Related papers (2023-07-07T17:21:16Z) - Multi-robot Social-aware Cooperative Planning in Pedestrian Environments
Using Multi-agent Reinforcement Learning [2.7716102039510564]
We propose a novel multi-robot social-aware efficient cooperative planner that on the basis of off-policy multi-agent reinforcement learning (MARL)
We adopt temporal-spatial graph (TSG)-based social encoder to better extract the importance of social relation between each robot and the pedestrians in its field of view (FOV)
arXiv Detail & Related papers (2022-11-29T03:38:47Z) - Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph [3.8461692052415137]
We study the problem of safe and intention-aware robot navigation in dense and interactive crowds.
We propose a novel recurrent graph neural network with attention mechanisms to capture heterogeneous interactions among agents.
We demonstrate that our method enables the robot to achieve good navigation performance and non-invasiveness in challenging crowd navigation scenarios.
arXiv Detail & Related papers (2022-03-03T16:26:36Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.