Removing Noise from Extracellular Neural Recordings Using Fully
Convolutional Denoising Autoencoders
- URL: http://arxiv.org/abs/2109.08945v1
- Date: Sat, 18 Sep 2021 14:51:24 GMT
- Title: Removing Noise from Extracellular Neural Recordings Using Fully
Convolutional Denoising Autoencoders
- Authors: Christodoulos Kechris, Alexandros Delitzas, Vasileios Matsoukas,
Panagiotis C. Petrantonakis
- Abstract summary: We propose a Fully Convolutional Denoising Autoencoder, which learns to produce a clean neuronal activity signal from a noisy multichannel input.
The experimental results on simulated data show that our proposed method can improve significantly the quality of noise-corrupted neural signals.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracellular recordings are severely contaminated by a considerable amount
of noise sources, rendering the denoising process an extremely challenging task
that should be tackled for efficient spike sorting. To this end, we propose an
end-to-end deep learning approach to the problem, utilizing a Fully
Convolutional Denoising Autoencoder, which learns to produce a clean neuronal
activity signal from a noisy multichannel input. The experimental results on
simulated data show that our proposed method can improve significantly the
quality of noise-corrupted neural signals, outperforming widely-used wavelet
denoising techniques.
Related papers
- Learning Provably Robust Estimators for Inverse Problems via Jittering [51.467236126126366]
We investigate whether jittering, a simple regularization technique, is effective for learning worst-case robust estimators for inverse problems.
We show that jittering significantly enhances the worst-case robustness, but can be suboptimal for inverse problems beyond denoising.
arXiv Detail & Related papers (2023-07-24T14:19:36Z) - Explainable Artificial Intelligence driven mask design for
self-supervised seismic denoising [0.0]
Self-supervised coherent noise suppression methods require extensive knowledge of the noise statistics.
We propose the use of explainable artificial intelligence approaches to see inside the black box that is the denoising network.
We show that a simple averaging of the Jacobian contributions over a number of randomly selected input pixels, provides an indication of the most effective mask.
arXiv Detail & Related papers (2023-07-13T11:02:55Z) - Weak-signal extraction enabled by deep-neural-network denoising of
diffraction data [26.36525764239897]
We show how data can be denoised via a deep convolutional neural network.
We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data.
arXiv Detail & Related papers (2022-09-19T14:43:01Z) - Learning Task-Oriented Flows to Mutually Guide Feature Alignment in
Synthesized and Real Video Denoising [137.5080784570804]
Video denoising aims at removing noise from videos to recover clean ones.
Some existing works show that optical flow can help the denoising by exploiting the additional spatial-temporal clues from nearby frames.
We propose a new multi-scale refined optical flow-guided video denoising method, which is more robust to different noise levels.
arXiv Detail & Related papers (2022-08-25T00:09:18Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
We propose a new learning-based non-blind denoising technique named Attention Residual Convolutional Neural Network (ARCNN) and its extension to blind denoising named Flexible Attention Residual Convolutional Neural Network (FARCNN)
ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for Gaussian and Poisson denoising, respectively FARCNN presented very consistent results, even with slightly worsen performance compared to ARCNN.
arXiv Detail & Related papers (2021-01-19T16:37:57Z) - Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated
Convolutional Kernel Architecture [3.796436257221662]
We propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking.
We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise.
arXiv Detail & Related papers (2020-12-07T12:13:17Z) - Adaptive noise imitation for image denoising [58.21456707617451]
We develop a new textbfadaptive noise imitation (ADANI) algorithm that can synthesize noisy data from naturally noisy images.
To produce realistic noise, a noise generator takes unpaired noisy/clean images as input, where the noisy image is a guide for noise generation.
Coupling the noisy data output from ADANI with the corresponding ground-truth, a denoising CNN is then trained in a fully-supervised manner.
arXiv Detail & Related papers (2020-11-30T02:49:36Z) - Enhancing and Learning Denoiser without Clean Reference [23.11994688706024]
We propose a novel deep image-denoising method by regarding the noise reduction task as a special case of the noise transference task.
The results on real-world denoising benchmarks demonstrate that our proposed method achieves promising performance on removing realistic noises.
arXiv Detail & Related papers (2020-09-09T13:15:31Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.