Low-resolution Human Pose Estimation
- URL: http://arxiv.org/abs/2109.09090v1
- Date: Sun, 19 Sep 2021 09:13:57 GMT
- Title: Low-resolution Human Pose Estimation
- Authors: Chen Wang, Feng Zhang, Xiatian Zhu, Shuzhi Sam Ge
- Abstract summary: We propose a novel Confidence-Aware Learning (CAL) method for low-resolution pose estimation.
CAL addresses two fundamental limitations of existing offset learning methods: inconsistent training and testing, decoupled heatmap and offset learning.
Our method outperforms significantly the state-of-the-art methods for low-resolution human pose estimation.
- Score: 49.531572116079026
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Human pose estimation has achieved significant progress on images with high
imaging resolution. However, low-resolution imagery data bring nontrivial
challenges which are still under-studied. To fill this gap, we start with
investigating existing methods and reveal that the most dominant heatmap-based
methods would suffer more severe model performance degradation from
low-resolution, and offset learning is an effective strategy. Established on
this observation, in this work we propose a novel Confidence-Aware Learning
(CAL) method which further addresses two fundamental limitations of existing
offset learning methods: inconsistent training and testing, decoupled heatmap
and offset learning. Specifically, CAL selectively weighs the learning of
heatmap and offset with respect to ground-truth and most confident prediction,
whilst capturing the statistical importance of model output in mini-batch
learning manner. Extensive experiments conducted on the COCO benchmark show
that our method outperforms significantly the state-of-the-art methods for
low-resolution human pose estimation.
Related papers
- Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
We introduce a novel training data attribution method called Debias and Denoise Attribution (DDA)
Our method significantly outperforms existing approaches, achieving an averaged AUC of 91.64%.
DDA exhibits strong generality and scalability across various sources and different-scale models like LLaMA2, QWEN2, and Mistral.
arXiv Detail & Related papers (2024-10-02T07:14:26Z) - Rejection Sampling IMLE: Designing Priors for Better Few-Shot Image
Synthesis [7.234618871984921]
An emerging area of research aims to learn deep generative models with limited training data.
We propose RS-IMLE, a novel approach that changes the prior distribution used for training.
This leads to substantially higher quality image generation compared to existing GAN and IMLE-based methods.
arXiv Detail & Related papers (2024-09-26T00:19:42Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors.
We introduce a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods.
Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR.
arXiv Detail & Related papers (2024-09-25T16:15:21Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - An Effective Dynamic Gradient Calibration Method for Continual Learning [11.555822066922508]
Continual learning (CL) is a fundamental topic in machine learning, where the goal is to train a model with continuously incoming data and tasks.
Due to the memory limit, we cannot store all the historical data, and therefore confront the catastrophic forgetting'' problem.
We develop an effective algorithm to calibrate the gradient in each updating step of the model.
arXiv Detail & Related papers (2024-07-30T16:30:09Z) - Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models [20.550324116099357]
Diffusion models are known for their tremendous ability to generate novel and high-quality samples.
Recent approaches for memory mitigation either only focused on the text modality problem in cross-modal generation tasks or utilized data augmentation strategies.
We propose a novel training framework for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization.
arXiv Detail & Related papers (2024-07-22T02:19:30Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Improving Robustness for Pose Estimation via Stable Heatmap Regression [19.108116394510258]
A heatmap regression method is proposed to alleviate network vulnerability to small perturbations.
A maximum stability training loss is used to simplify the optimization difficulty.
The proposed method achieves a significant advance in robustness over state-of-the-art approaches on two benchmark datasets.
arXiv Detail & Related papers (2021-05-08T03:07:05Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - Deep Weakly-Supervised Learning Methods for Classification and
Localization in Histology Images: A Survey [25.429124017422385]
Using deep learning models to diagnose cancer presents several challenges.
Deep weakly-supervised object localization (WSOL) methods provide strategies for low-cost training of deep learning models.
This paper provides a review of state-of-art DL methods for WSOL.
arXiv Detail & Related papers (2019-09-08T00:01:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.