Deep Plug-and-Play HIO Approach for Phase Retrieval
- URL: http://arxiv.org/abs/2411.18967v2
- Date: Fri, 17 Jan 2025 06:44:38 GMT
- Title: Deep Plug-and-Play HIO Approach for Phase Retrieval
- Authors: Cagatay Isil, Figen S. Oktem,
- Abstract summary: In the phase retrieval problem, the aim is the recovery of an unknown image from intensity-only measurements.
Recent learning-based approaches have emerged as powerful alternatives to the analytical methods for several inverse problems.
A novel plug-and-play approach that exploits learning-based prior and efficient update steps has been presented.
- Score: 0.0
- License:
- Abstract: In the phase retrieval problem, the aim is the recovery of an unknown image from intensity-only measurements such as Fourier intensity. Although there are several solution approaches, solving this problem is challenging due to its nonlinear and ill-posed nature. Recently, learning-based approaches have emerged as powerful alternatives to the analytical methods for several inverse problems. In the context of phase retrieval, a novel plug-and-play approach that exploits learning-based prior and efficient update steps has been presented at the Computational Optical Sensing and Imaging topical meeting, with demonstrated state-of-the-art performance. The key idea was to incorporate learning-based prior to the Gerchberg-Saxton type algorithms through plug-and-play regularization. In this paper, we present the mathematical development of the method including the derivation of its analytical update steps based on half-quadratic splitting and comparatively evaluate its performance through extensive simulations on a large test dataset. The results show the effectiveness of the method in terms of both image quality, computational efficiency, and robustness to initialization and noise.
Related papers
- An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Fast and efficient speech enhancement with variational autoencoders [0.0]
Unsupervised speech enhancement based on variational autoencoders has shown promising performance compared with the commonly used supervised methods.
We propose a new approach based on Langevin dynamics that generates multiple sequences of samples and comes with a total variation-based regularization to incorporate temporal correlations of latent vectors.
Our experiments demonstrate that the developed framework makes an effective compromise between computational efficiency and enhancement quality, and outperforms existing methods.
arXiv Detail & Related papers (2022-11-02T09:52:13Z) - Deep Active Learning with Noise Stability [24.54974925491753]
Uncertainty estimation for unlabeled data is crucial to active learning.
We propose a novel algorithm that leverages noise stability to estimate data uncertainty.
Our method is generally applicable in various tasks, including computer vision, natural language processing, and structural data analysis.
arXiv Detail & Related papers (2022-05-26T13:21:01Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Deep Learning Adapted Acceleration for Limited-view Photoacoustic
Computed Tomography [1.8830359888767887]
Photoacoustic computed tomography (PACT) uses unfocused large-area light to illuminate the target with ultrasound transducer array for PA signal detection.
Limited-view issue could cause a low-quality image in PACT due to the limitation of geometric condition.
A model-based method that combines the mathematical variational model with deep learning is proposed to speed up and regularize the unrolled procedure of reconstruction.
arXiv Detail & Related papers (2021-11-08T02:05:58Z) - Low-resolution Human Pose Estimation [49.531572116079026]
We propose a novel Confidence-Aware Learning (CAL) method for low-resolution pose estimation.
CAL addresses two fundamental limitations of existing offset learning methods: inconsistent training and testing, decoupled heatmap and offset learning.
Our method outperforms significantly the state-of-the-art methods for low-resolution human pose estimation.
arXiv Detail & Related papers (2021-09-19T09:13:57Z) - Unfolded Algorithms for Deep Phase Retrieval [16.14838937433809]
We propose a hybrid model-based data-driven deep architecture, referred to as Unfolded Phase Retrieval (UPR)
The proposed method benefits from versatility and interpretability of well-established model-based algorithms.
We consider a joint design of the sensing matrix and the signal processing algorithm and utilize the deep unfolding technique in the process.
arXiv Detail & Related papers (2020-12-21T03:46:17Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z) - When deep denoising meets iterative phase retrieval [5.639904484784126]
Conventional algorithms for retrieving the phase suffer when noise is present but display global convergence when given clean data.
Here, we combine iterative methods from phase retrieval with image statistics from deep denoisers, via regularization-by-denoising.
The resulting methods inherit the advantages of each approach and outperform other noise-robust phase retrieval algorithms.
arXiv Detail & Related papers (2020-03-03T21:00:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.