Deep Quantile Regression for Uncertainty Estimation in Unsupervised and
Supervised Lesion Detection
- URL: http://arxiv.org/abs/2109.09374v1
- Date: Mon, 20 Sep 2021 08:50:21 GMT
- Title: Deep Quantile Regression for Uncertainty Estimation in Unsupervised and
Supervised Lesion Detection
- Authors: Haleh Akrami, Anand Joshi, Sergul Aydore, Richard Leahy
- Abstract summary: Uncertainty is important in critical applications such as anomaly or lesion detection and clinical diagnosis.
In this work, we focus on using quantile regression to estimate aleatoric uncertainty and use it for estimating uncertainty in both supervised and unsupervised lesion detection problems.
We show how quantile regression can be used to characterize expert disagreement in the location of lesion boundaries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite impressive state-of-the-art performance on a wide variety of machine
learning tasks in multiple applications, deep learning methods can produce
over-confident predictions, particularly with limited training data. Therefore,
quantifying uncertainty is particularly important in critical applications such
as anomaly or lesion detection and clinical diagnosis, where a realistic
assessment of uncertainty is essential in determining surgical margins, disease
status and appropriate treatment. In this work, we focus on using quantile
regression to estimate aleatoric uncertainty and use it for estimating
uncertainty in both supervised and unsupervised lesion detection problems. In
the unsupervised settings, we apply quantile regression to a lesion detection
task using Variational AutoEncoder (VAE). The VAE models the output as a
conditionally independent Gaussian characterized by means and variances for
each output dimension. Unfortunately, joint optimization of both mean and
variance in the VAE leads to the well-known problem of shrinkage or
underestimation of variance. We describe an alternative VAE model,
Quantile-Regression VAE (QR-VAE), that avoids this variance shrinkage problem
by estimating conditional quantiles for the given input image. Using the
estimated quantiles, we compute the conditional mean and variance for input
images under the conditionally Gaussian model. We then compute reconstruction
probability using this model as a principled approach to outlier or anomaly
detection applications. In the supervised setting, we develop binary quantile
regression (BQR) for the supervised lesion segmentation task. BQR segmentation
can capture uncertainty in label boundaries. We show how quantile regression
can be used to characterize expert disagreement in the location of lesion
boundaries.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Beyond the Norms: Detecting Prediction Errors in Regression Models [26.178065248948773]
This paper tackles the challenge of detecting unreliable behavior in regression algorithms.
We introduce the notion of unreliability in regression, when the output of the regressor exceeds a specified discrepancy (or error)
We show empirical improvements in error detection for multiple regression tasks, consistently outperforming popular baseline approaches.
arXiv Detail & Related papers (2024-06-11T05:51:44Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Beta quantile regression for robust estimation of uncertainty in the
presence of outliers [1.6377726761463862]
Quantile Regression can be used to estimate aleatoric uncertainty in deep neural networks.
We propose a robust solution for quantile regression that incorporates concepts from robust divergence.
arXiv Detail & Related papers (2023-09-14T01:18:57Z) - Semi-Supervised Deep Regression with Uncertainty Consistency and
Variational Model Ensembling via Bayesian Neural Networks [31.67508478764597]
We propose a novel approach to semi-supervised regression, namely Uncertainty-Consistent Variational Model Ensembling (UCVME)
Our consistency loss significantly improves uncertainty estimates and allows higher quality pseudo-labels to be assigned greater importance under heteroscedastic regression.
Experiments show that our method outperforms state-of-the-art alternatives on different tasks and can be competitive with supervised methods that use full labels.
arXiv Detail & Related papers (2023-02-15T10:40:51Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Recalibration of Aleatoric and Epistemic Regression Uncertainty in
Medical Imaging [2.126171264016785]
Well-calibrated uncertainty in regression allows robust rejection of unreliable predictions or detection of out-of-distribution samples.
$ sigma $ scaling is able to reliably recalibrate predictive uncertainty.
arXiv Detail & Related papers (2021-04-26T07:18:58Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z) - Addressing Variance Shrinkage in Variational Autoencoders using Quantile
Regression [0.0]
Probable Variational AutoEncoder (VAE) has become a popular model for anomaly detection in applications such as lesion detection in medical images.
We describe an alternative approach that avoids the well-known problem of shrinkage or underestimation of variance.
Using estimated quantiles to compute mean and variance under the Gaussian assumption, we compute reconstruction probability as a principled approach to outlier or anomaly detection.
arXiv Detail & Related papers (2020-10-18T17:37:39Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.