論文の概要: Unsupervised domain adaptation with non-stochastic missing data
- arxiv url: http://arxiv.org/abs/2109.09505v1
- Date: Thu, 16 Sep 2021 06:37:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-21 16:17:24.700026
- Title: Unsupervised domain adaptation with non-stochastic missing data
- Title(参考訳): 非確率的欠落データを用いた教師なし領域適応
- Authors: Matthieu Kirchmeyer (MLIA), Patrick Gallinari (MLIA), Alain
Rakotomamonjy (LITIS), Amin Mantrach
- Abstract要約: 対象領域に欠落するデータが存在する場合の分類問題に対する教師なし領域適応(UDA)について検討する。
命令はドメイン不変の潜在空間で実行され、完全なソースドメインからの間接的な監視を利用する。
データセットの適応、分類、計算を共同で行う利点を示す。
- 参考スコア(独自算出の注目度): 0.6608945629704323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider unsupervised domain adaptation (UDA) for classification problems
in the presence of missing data in the unlabelled target domain. More
precisely, motivated by practical applications, we analyze situations where
distribution shift exists between domains and where some components are
systematically absent on the target domain without available supervision for
imputing the missing target components. We propose a generative approach for
imputation. Imputation is performed in a domain-invariant latent space and
leverages indirect supervision from a complete source domain. We introduce a
single model performing joint adaptation, imputation and classification which,
under our assumptions, minimizes an upper bound of its target generalization
error and performs well under various representative divergence families
(H-divergence, Optimal Transport). Moreover, we compare the target error of our
Adaptation-imputation framework and the "ideal" target error of a UDA
classifier without missing target components. Our model is further improved
with self-training, to bring the learned source and target class posterior
distributions closer. We perform experiments on three families of datasets of
different modalities: a classical digit classification benchmark, the Amazon
product reviews dataset both commonly used in UDA and real-world digital
advertising datasets. We show the benefits of jointly performing adaptation,
classification and imputation on these datasets.
- Abstract(参考訳): 対象領域に欠落するデータが存在する場合の分類問題に対する教師なし領域適応(UDA)を検討する。
より正確には、実用的な応用によって動機づけられた、ドメイン間の分散シフトが存在し、ターゲットドメインにいくつかのコンポーネントが体系的に欠落している状況を分析する。
我々はインプテーションに対する生成的アプローチを提案する。
インプテーションはドメイン不変な潜在空間で行われ、完全なソースドメインからの間接的な監督を利用する。
本稿では, 目的の一般化誤差の上限を最小化し, 種々の分岐族(H-divergence, Optimal Transport, H-divergence, H-divergence, Optimal Transport)の下でよく機能する単一モデルを提案する。
さらに, 適応推定フレームワークの目標誤差と, UDA分類器の「理想的」目標誤差を, 目標成分を欠くことなく比較した。
本モデルは,学習源と目標クラスの後方分布をより近づけるため,自己学習によりさらに改善されている。
古典的な数字分類ベンチマーク、Amazonの製品レビューデータセットは、UDAと現実世界のデジタル広告データセットの両方でよく使われている。
これらのデータセットに適応・分類・インプテーションを共同で行う利点を示す。
関連論文リスト
- Unsupervised Domain Adaptation via Distilled Discriminative Clustering [45.39542287480395]
対象データの識別クラスタリングとしてドメイン適応問題を再検討する。
本稿では,ラベル付き情報源データよりも並列に教師付き学習目標を用いて,ネットワークを協調的に訓練することを提案する。
5つの人気のあるベンチマークデータセットに対して、慎重にアブレーション研究と広範な実験を行う。
論文 参考訳(メタデータ) (2023-02-23T13:03:48Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
ドメイン適応は現代の機械学習において一般的なパラダイムである。
ドメイン適応主成分分析(DAPCA)という手法を提案する。
DAPCAは、領域適応タスクの解決に有用な線形化データ表現を見つける。
論文 参考訳(メタデータ) (2022-08-28T21:10:56Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Boosting Unsupervised Domain Adaptation with Soft Pseudo-label and
Curriculum Learning [19.903568227077763]
教師なしドメイン適応(UDA)は、完全にラベル付けされたソースドメインからのデータを活用することにより、ラベル付けされていないターゲットドメインの分類性能を向上させる。
ソフトな擬似ラベル戦略を用いてモデル予測の欠陥を大幅に低減するモデルに依存しない2段階学習フレームワークを提案する。
第2段階では,2つのドメインの損失間の重み付けを適応的に制御するカリキュラム学習戦略を提案する。
論文 参考訳(メタデータ) (2021-12-03T14:47:32Z) - CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation [1.2691047660244335]
Unsupervised Domain Adaptation (UDA) は、ラベル付きソース分布とラベル付きターゲット分布との整合を目標とし、ドメイン不変な予測モデルを得る。
半教師付きドメイン適応(CLDA)のためのコントラスト学習フレームワークを提案する。
CLDAは上記のすべてのデータセットに対して最先端の結果を達成する。
論文 参考訳(メタデータ) (2021-06-30T20:23:19Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Domain Adaptation with Incomplete Target Domains [61.68950959231601]
本稿では、この新たなドメイン適応問題に対処するために、不完全データインプットに基づく Adversarial Network (IDIAN) モデルを提案する。
提案モデルでは,対象領域における部分的な観測に基づいて,欠落した特徴値を満たすデータ計算モジュールを設計する。
我々は、クロスドメインベンチマークタスクと、不完全なターゲットドメインを用いた実世界適応タスクの両方で実験を行う。
論文 参考訳(メタデータ) (2020-12-03T00:07:40Z) - Unsupervised BatchNorm Adaptation (UBNA): A Domain Adaptation Method for
Semantic Segmentation Without Using Source Domain Representations [35.586031601299034]
Unsupervised BatchNorm Adaptation (UBNA) は、与えられた事前訓練されたモデルを、目に見えないターゲットドメインに適応させる。
我々は指数的に減衰する運動量因子を用いて、正規化層統計を対象領域に部分的に適応させる。
標準的なUDAアプローチと比較して、ソースドメイン表現のパフォーマンスと利用のトレードオフを報告します。
論文 参考訳(メタデータ) (2020-11-17T08:37:40Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptUDA (UDA) は、ラベル付きソースデータセットから学んだ知識を活用して、新しいラベル付きドメインで同様のタスクを解決することを目的としている。
従来のUDAメソッドは、モデルに適応するためには、通常、ソースデータにアクセスする必要がある。
この作業は、訓練済みのソースモデルのみが利用できる実践的な環境に取り組み、ソースデータなしでそのようなモデルを効果的に活用してUDA問題を解決する方法に取り組みます。
論文 参考訳(メタデータ) (2020-02-20T03:13:58Z) - Enlarging Discriminative Power by Adding an Extra Class in Unsupervised
Domain Adaptation [5.377369521932011]
新たに人工的なクラスを追加し、新しいクラスのGAN生成サンプルとともにデータ上でモデルをトレーニングする。
私たちのアイデアは、DANN、VADA、DIRT-Tといった既存のメソッドと互換性がある、非常に一般的なものです。
論文 参考訳(メタデータ) (2020-02-19T07:58:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。