論文の概要: Unsupervised BatchNorm Adaptation (UBNA): A Domain Adaptation Method for
Semantic Segmentation Without Using Source Domain Representations
- arxiv url: http://arxiv.org/abs/2011.08502v2
- Date: Thu, 11 Nov 2021 14:38:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 16:47:38.250234
- Title: Unsupervised BatchNorm Adaptation (UBNA): A Domain Adaptation Method for
Semantic Segmentation Without Using Source Domain Representations
- Title(参考訳): Unsupervised BatchNorm Adaptation (UBNA):ソースドメイン表現を使わずにセマンティックセグメンテーションのためのドメイン適応法
- Authors: Marvin Klingner, Jan-Aike Term\"ohlen, Jacob Ritterbach, Tim
Fingscheidt
- Abstract要約: Unsupervised BatchNorm Adaptation (UBNA) は、与えられた事前訓練されたモデルを、目に見えないターゲットドメインに適応させる。
我々は指数的に減衰する運動量因子を用いて、正規化層統計を対象領域に部分的に適応させる。
標準的なUDAアプローチと比較して、ソースドメイン表現のパフォーマンスと利用のトレードオフを報告します。
- 参考スコア(独自算出の注目度): 35.586031601299034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present a solution to the task of "unsupervised domain
adaptation (UDA) of a given pre-trained semantic segmentation model without
relying on any source domain representations". Previous UDA approaches for
semantic segmentation either employed simultaneous training of the model in the
source and target domains, or they relied on an additional network, replaying
source domain knowledge to the model during adaptation. In contrast, we present
our novel Unsupervised BatchNorm Adaptation (UBNA) method, which adapts a given
pre-trained model to an unseen target domain without using -- beyond the
existing model parameters from pre-training -- any source domain
representations (neither data, nor networks) and which can also be applied in
an online setting or using just a few unlabeled images from the target domain
in a few-shot manner. Specifically, we partially adapt the normalization layer
statistics to the target domain using an exponentially decaying momentum
factor, thereby mixing the statistics from both domains. By evaluation on
standard UDA benchmarks for semantic segmentation we show that this is superior
to a model without adaptation and to baseline approaches using statistics from
the target domain only. Compared to standard UDA approaches we report a
trade-off between performance and usage of source domain representations.
- Abstract(参考訳): 本稿では,事前訓練されたセマンティックセグメンテーションモデルの教師なしドメイン適応(UDA)課題に対する,ソースドメイン表現に依存しない解決法を提案する。
セマンティックセグメンテーションのための以前のUDAアプローチでは、ソースドメインとターゲットドメインのモデルの同時トレーニングを採用するか、あるいは追加のネットワークに依存し、適応中にソースドメインの知識をモデルに再生する。
これとは対照的に,本手法では,事前学習されたモデルに対して,事前学習による既存モデルのパラメータを越えず,未学習のターゲット領域に適応させる手法である未教師付きバッチノルム適応法(ubna)を提案する。
具体的には、指数関数的に減衰する運動量係数を用いて正規化層統計を対象領域に部分的に適用し、両方の領域からの統計を混合する。
セマンティックセグメンテーションのための標準UDAベンチマークの評価により、これは適応のないモデルや、対象領域からの統計を用いたベースラインアプローチよりも優れていることを示す。
標準的なUDAアプローチと比較して、ソースドメイン表現のパフォーマンスと利用のトレードオフを報告します。
関連論文リスト
- Style Adaptation for Domain-adaptive Semantic Segmentation [2.1365683052370046]
ドメインの不一致は、ターゲットドメインに適用した場合、ソースドメインデータに基づいてトレーニングされた一般的なネットワークモデルの性能を著しく低下させる。
パラメータ計算を必要とせず、自己学習に基づくUDA手法とシームレスに統合する。
提案手法は,GTA->Cityscapesデータセット上で76.93 mIoUの有意なUDA性能を達成し,過去の成果に比べて+1.03ポイント向上したことを示す。
論文 参考訳(メタデータ) (2024-04-25T02:51:55Z) - Online Continual Domain Adaptation for Semantic Image Segmentation Using
Internal Representations [28.549418215123936]
アノテーションのない領域におけるモデル一般化を改善するために,画像のセマンティックセマンティックセマンティックセマンティクスのためのオンラインUDAアルゴリズムを開発した。
確立されたセマンティックセマンティックセマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティックス(SOTA)と比較した。
論文 参考訳(メタデータ) (2024-01-02T04:48:49Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
非教師なしドメイン適応(UDA)は、ソースドメインからラベルのないデータを持つターゲットドメインへの知識の転送に非常に効果的であることが証明されている。
オープンセットドメイン適応(ODA)は、トレーニングフェーズ中にこれらのクラスを識別する潜在的なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-30T11:38:46Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
セマンティックセグメンテーションに特化したトレーニングモデルは、大量のピクセル単位のアノテートデータを必要とする。
教師なしドメイン適応手法は、ラベル付きソースとラベルなしターゲットデータとの間の特徴分布の整合化を目的としている。
以前の研究は、対象データにスパース単一ピクセルアノテーションという形で、人間のインタラクションをこのプロセスに含めようと試みていた。
アクティブな選択による注釈付きポイントを用いた意味的セグメンテーションのための新しいドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-01T01:52:28Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Source-Free Domain Adaptive Fundus Image Segmentation with Denoised
Pseudo-Labeling [56.98020855107174]
ドメイン適応は通常、ソースドメインデータにアクセスして、ターゲットデータとのドメインアライメントのために配布情報を利用する必要があります。
多くの実世界のシナリオでは、プライバシの問題により、ターゲットドメインのモデル適応中にソースデータがアクセスできない場合がある。
本稿では,本問題に対する新たな擬似ラベル付け手法を提案する。
論文 参考訳(メタデータ) (2021-09-19T06:38:21Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
ソースとターゲットドメイン間のギャップを増やすことで、ドメイン適応はより難しくなります。
中間領域のモデルを学習する補助モデル(AuxSelfTrain)の自己学習を提案する。
教師なしおよび半教師付きドメイン適応のベンチマークデータセットの実験は、その有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:15:25Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation(UDA)は、セマンティックセグメンテーションのための畳み込みニューラルネットワークベースのアプローチがピクセルレベルの注釈付きデータに大きく依存するという課題に取り組むことができる。
そこで本稿では,十分に訓練されたソースモデルとラベルなしのターゲットドメインデータセットのみを適用可能な,意味セグメンテーションのためのソースフリーなドメイン適応フレームワークsfdaを提案する。
論文 参考訳(メタデータ) (2021-03-30T14:14:29Z) - Unsupervised Model Adaptation for Continual Semantic Segmentation [15.820660013260584]
本研究では,ラベル付きソースドメインを用いて訓練されたセマンティックセグメンテーションモデルを,ラベル付きターゲットドメインで適切に一般化するアルゴリズムを開発した。
我々は,アルゴリズムが有効である条件を理論的に分析し,説明する。
ベンチマーク適応タスクの実験では, 共同UDA手法と比較して, 競争性能が向上することを示した。
論文 参考訳(メタデータ) (2020-09-26T04:55:50Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptUDA (UDA) は、ラベル付きソースデータセットから学んだ知識を活用して、新しいラベル付きドメインで同様のタスクを解決することを目的としている。
従来のUDAメソッドは、モデルに適応するためには、通常、ソースデータにアクセスする必要がある。
この作業は、訓練済みのソースモデルのみが利用できる実践的な環境に取り組み、ソースデータなしでそのようなモデルを効果的に活用してUDA問題を解決する方法に取り組みます。
論文 参考訳(メタデータ) (2020-02-20T03:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。