論文の概要: Primary Tumor and Inter-Organ Augmentations for Supervised Lymph Node
Colon Adenocarcinoma Metastasis Detection
- arxiv url: http://arxiv.org/abs/2109.09518v1
- Date: Fri, 17 Sep 2021 17:31:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-21 16:40:27.642163
- Title: Primary Tumor and Inter-Organ Augmentations for Supervised Lymph Node
Colon Adenocarcinoma Metastasis Detection
- Title(参考訳): 転移性リンパ節癌に対する原発性腫瘍および臓器間増生療法
- Authors: Apostolia Tsirikoglou, Karin Stacke, Gabriel Eilertsen, Jonas Unger
- Abstract要約: ラベル付きデータの不足は、病理組織学応用のためのディープラーニングベースのモデルを開発する上で、大きなボトルネックとなる。
本研究は,対象領域の限定的あるいは全く表現されていない場合の大腸癌転移検出のためのトレーニングデータの拡張方法について検討する。
- 参考スコア(独自算出の注目度): 8.69535649683089
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The scarcity of labeled data is a major bottleneck for developing accurate
and robust deep learning-based models for histopathology applications. The
problem is notably prominent for the task of metastasis detection in lymph
nodes, due to the tissue's low tumor-to-non-tumor ratio, resulting in labor-
and time-intensive annotation processes for the pathologists. This work
explores alternatives on how to augment the training data for colon carcinoma
metastasis detection when there is limited or no representation of the target
domain. Through an exhaustive study of cross-validated experiments with limited
training data availability, we evaluate both an inter-organ approach utilizing
already available data for other tissues, and an intra-organ approach,
utilizing the primary tumor. Both these approaches result in little to no extra
annotation effort. Our results show that these data augmentation strategies can
be an efficient way of increasing accuracy on metastasis detection, but
fore-most increase robustness.
- Abstract(参考訳): ラベル付きデータの不足は、病理学応用のための正確で堅牢なディープラーニングベースのモデルを開発する上で、大きなボトルネックとなる。
この問題はリンパ節転移の検出において特に顕著であり、腫瘍と非腫瘍の比率が低かったため、病理組織に手間と時間を要する注釈処理がもたらされた。
本研究は,対象領域の限定的あるいは全く表現されていない場合の大腸癌転移検出のためのトレーニングデータの拡張方法について検討する。
トレーニングデータの可用性を限定したクロスバリアント実験を徹底的に検討し,他の組織ですでに利用可能なデータを利用したorgan間アプローチと,原発腫瘍を用いたorgan内アプローチの両方を評価した。
どちらのアプローチも、追加のアノテーションの努力をほとんど、あるいは全く行わない。
以上より,これらのデータ拡張戦略は,転移検出の正確性を高める効果的な方法であるが,最も堅牢性が向上する可能性が示唆された。
関連論文リスト
- Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
肺がんはがんの診断の主要な原因の1つであり、世界中でがん関連死亡の原因となっている。
肺結節の分節は、悪性病変と良性病変の区別において、医師を支援する上で重要な役割を担っている。
本稿では,CT画像における肺結節のセグメンテーションモデルを導入し,セグメンテーションと分類プロセスを統合する深層学習フレームワークを活用する。
論文 参考訳(メタデータ) (2024-10-26T11:58:12Z) - Pathology-and-genomics Multimodal Transformer for Survival Outcome
Prediction [43.1748594898772]
大腸癌生存予測に病理学とゲノム学的知見を統合したマルチモーダルトランスフォーマー(PathOmics)を提案する。
ギガピクセル全スライド画像における組織ミクロ環境間の内在的相互作用を捉えるための教師なし事前訓練を強調した。
我々は,TCGA大腸癌と直腸癌コホートの両方に対するアプローチを評価し,提案手法は競争力があり,最先端の研究より優れていることを示す。
論文 参考訳(メタデータ) (2023-07-22T00:59:26Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
前立腺MRIの非対位画像翻訳のための新しいアプローチと臨床的に重要なPCaを分類するための不確実性認識トレーニングアプローチを提案する。
提案手法では,無ペアの3.0T多パラメータ前立腺MRIを1.5Tに翻訳し,利用可能なトレーニングデータを増強する。
実験の結果,提案手法は,従来の研究に比べてAUC(Area Under ROC Curve)を20%以上改善することがわかった。
論文 参考訳(メタデータ) (2023-07-02T05:26:54Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - Robust Tumor Detection from Coarse Annotations via Multi-Magnification
Ensembles [11.070094685209598]
乳癌患者のセンチネルリンパ節のオープンなCAMELYON16データセットにおいて,転移の検出精度を大幅に向上する新しいアンサンブル法を提案する。
臨床的に癌診断に有用であることを示すため,本法により良好な結果が得られた。
論文 参考訳(メタデータ) (2023-03-29T08:41:22Z) - Domain adaptation strategies for cancer-independent detection of lymph
node metastases [8.00124399861179]
大規模で高品質な公開データセットは、乳がんのリンパ節転移を検出する畳み込みニューラルネットワークの開発につながっている。
マルチタスク設定において,既存の高品質データセットを最も効率的に活用する方法を示す。
論文 参考訳(メタデータ) (2022-07-13T13:41:20Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Deep Semi-supervised Metric Learning with Dual Alignment for Cervical
Cancer Cell Detection [49.78612417406883]
子宮頸癌細胞検出のための新しい半教師付き深度測定法を提案する。
私たちのモデルは、埋め込みメトリック空間を学習し、提案レベルとプロトタイプレベルの両方でセマンティック機能の二重アライメントを行います。
本研究は,240,860個の頸部細胞画像からなる半監督型頸部がん細胞検出のための大規模データセットを初めて構築した。
論文 参考訳(メタデータ) (2021-04-07T17:11:27Z) - A Study of Deep Learning Colon Cancer Detection in Limited Data Access
Scenarios [6.338265282525758]
分類と検出のためのディープラーニング手法は、大きな可能性を示しているが、多くの場合、大量のトレーニングデータを必要とする。
多くのがんタイプにおいて、データの不足はDLモデルをトレーニングするための障壁を生み出す。
リンパ節データが少ない,あるいはほとんどない癌転移を検出できることを示し,既存の注釈組織学的データが他の領域に一般化できる可能性を示した。
論文 参考訳(メタデータ) (2020-05-20T19:28:07Z) - A Novel and Efficient Tumor Detection Framework for Pancreatic Cancer
via CT Images [21.627818410241552]
本稿では,新しい膵腫瘍検出フレームワークを提案する。
提案手法のコントリビューションは,Augmented Feature Pyramid Network,Self-Adaptive Feature Fusion,Dependencies Computation Moduleの3つのコンポーネントから構成される。
実験により,AUCの0.9455による検出において,他の最先端手法よりも優れた性能が得られた。
論文 参考訳(メタデータ) (2020-02-11T15:48:22Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。