論文の概要: Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation
- arxiv url: http://arxiv.org/abs/2410.20154v1
- Date: Sat, 26 Oct 2024 11:58:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:22:46.510766
- Title: Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation
- Title(参考訳): 肺結節分割のための空間規則化を用いた検出誘導深層学習モデル
- Authors: Jiasen Zhang, Mingrui Yang, Weihong Guo, Brian A. Xavier, Michael Bolen, Xiaojuan Li,
- Abstract要約: 肺がんはがんの診断の主要な原因の1つであり、世界中でがん関連死亡の原因となっている。
肺結節の分節は、悪性病変と良性病変の区別において、医師を支援する上で重要な役割を担っている。
本稿では,CT画像における肺結節のセグメンテーションモデルを導入し,セグメンテーションと分類プロセスを統合する深層学習フレームワークを活用する。
- 参考スコア(独自算出の注目度): 2.4044422838107438
- License:
- Abstract: Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide. The early detection of lung nodules plays a pivotal role in improving outcomes for patients, as it enables timely and effective treatment interventions. The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions. However, this task remains challenging due to the substantial variation in the shapes and sizes of lung nodules, and their frequent proximity to lung tissues, which complicates clear delineation. In this study, we introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes. This model is distinguished by its use of feature combination blocks, which facilitate the sharing of information between the segmentation and classification components. Additionally, we employ the classification outcomes as priors to refine the size estimation of the predicted nodules, integrating these with a spatial regularization technique to enhance precision. Furthermore, recognizing the challenges posed by limited training datasets, we have developed an optimal transfer learning strategy that freezes certain layers to further improve performance. The results show that our proposed model can capture the target nodules more accurately compared to other commonly used models. By applying transfer learning, the performance can be further improved, achieving a sensitivity score of 0.885 and a Dice score of 0.814.
- Abstract(参考訳): 肺がんはがんの診断の主要な原因の1つであり、世界中でがん関連死亡の原因となっている。
肺結節の早期発見は、タイムリーかつ効果的な治療介入を可能にするため、患者の予後を改善する上で重要な役割を担っている。
肺結節の分節は、悪性病変と良性病変の区別において、医師を支援する上で重要な役割を担っている。
しかし、この課題は肺結節の形状や大きさが著しく変化していることや、明確な起伏を複雑にする肺組織に頻繁に近接していることから、依然として困難である。
本研究では,CT画像における肺結節のセグメンテーションモデルを導入し,セグメンテーションと分類プロセスを統合したディープラーニングフレームワークを活用する。
このモデルは特徴結合ブロックを用いることで区別され、セグメンテーションと分類コンポーネント間の情報の共有を容易にする。
さらに,予測した結節の大きさ推定の精度を高めるために,分類結果を先行として使用し,空間正規化技術と組み合わせて精度を高める。
さらに、限られたトレーニングデータセットによって生じる課題を認識し、特定のレイヤを凍結してパフォーマンスをさらに向上する最適な転送学習戦略を開発した。
その結果,提案モデルでは,他の一般的なモデルと比較して,目標結節を正確に捕捉できることがわかった。
転写学習を適用することにより、感度スコア0.885、ディススコア0.814を達成し、さらに性能を向上させることができる。
関連論文リスト
- Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
コンピュータ支援診断は早期の肺結節の検出に役立ち、その後の結節の特徴づけを促進する。
MedSAMと呼ばれるSegment Anything Modelの変種を用いて肺結節をゼロショットでセグメント化するためのCADeを提案する。
また、放射能特徴のギャラリーを作成し、コントラスト学習を通じて画像と画像のペアを整列させることにより、良性/良性としての結節的特徴付けを行うCADxを提案する。
論文 参考訳(メタデータ) (2024-07-02T19:30:25Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Faithful learning with sure data for lung nodule diagnosis [34.55176532924471]
結節分類を確実にするための協調学習フレームワークを提案する。
損失関数は,ノード分割マップに規制された解釈可能性制約を導入することで,信頼性の高い特徴を学習するように設計されている。
論文 参考訳(メタデータ) (2022-02-25T06:33:11Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Primary Tumor and Inter-Organ Augmentations for Supervised Lymph Node
Colon Adenocarcinoma Metastasis Detection [8.69535649683089]
ラベル付きデータの不足は、病理組織学応用のためのディープラーニングベースのモデルを開発する上で、大きなボトルネックとなる。
本研究は,対象領域の限定的あるいは全く表現されていない場合の大腸癌転移検出のためのトレーニングデータの拡張方法について検討する。
論文 参考訳(メタデータ) (2021-09-17T17:31:25Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
疾患のある肺領域は、しばしばCT画像に高密度ゾーンを生成し、損傷した葉を特定するアルゴリズムの実行を制限する。
この影響は、肺葉を分節する機械学習手法の改善を動機づけた。
このアプローチは、放射線科医のロバストなツールとして臨床現場で容易に採用することができる。
論文 参考訳(メタデータ) (2021-05-11T17:10:25Z) - Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein
Segmentation in CT [45.93021999366973]
肺気道,動脈,静脈の分節に対する畳み込みニューラルネットワーク(CNN)の訓練は困難である。
コントラスト非造影CTにおいて,CNNによる正確な気道および動脈静脈分画法を提案する。
細気管支、動脈、静脈に対して優れた感受性を有する。
論文 参考訳(メタデータ) (2020-12-10T15:56:08Z) - ProCAN: Progressive Growing Channel Attentive Non-Local Network for Lung
Nodule Classification [0.0]
CT検診における肺癌の分類は,早期発見の最も重要な課題の一つである。
近年、肺結節を悪性または良性に分類する深層学習モデルが提案されている。
肺結節分類のためのProCAN(Progressive Growing Channel Attentive Non-Local)ネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-29T08:42:11Z) - Transfer Learning by Cascaded Network to identify and classify lung
nodules for cancer detection [3.5068701342301547]
既存の肺結節同定のためのディープラーニングアーキテクチャは、多数のパラメータを持つ複雑なアーキテクチャを用いていた。
本研究はCT画像に基づいて良性または悪性の肺結節を正確に分類・分類できるカスケードアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-09-24T10:35:46Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。