Primary Tumor and Inter-Organ Augmentations for Supervised Lymph Node
Colon Adenocarcinoma Metastasis Detection
- URL: http://arxiv.org/abs/2109.09518v1
- Date: Fri, 17 Sep 2021 17:31:25 GMT
- Title: Primary Tumor and Inter-Organ Augmentations for Supervised Lymph Node
Colon Adenocarcinoma Metastasis Detection
- Authors: Apostolia Tsirikoglou, Karin Stacke, Gabriel Eilertsen, Jonas Unger
- Abstract summary: scarcity of labeled data is a major bottleneck for developing deep learning-based models for histopathology applications.
This work explores alternatives on how to augment the training data for colon carcinoma metastasis detection when there is limited or no representation of the target domain.
- Score: 8.69535649683089
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The scarcity of labeled data is a major bottleneck for developing accurate
and robust deep learning-based models for histopathology applications. The
problem is notably prominent for the task of metastasis detection in lymph
nodes, due to the tissue's low tumor-to-non-tumor ratio, resulting in labor-
and time-intensive annotation processes for the pathologists. This work
explores alternatives on how to augment the training data for colon carcinoma
metastasis detection when there is limited or no representation of the target
domain. Through an exhaustive study of cross-validated experiments with limited
training data availability, we evaluate both an inter-organ approach utilizing
already available data for other tissues, and an intra-organ approach,
utilizing the primary tumor. Both these approaches result in little to no extra
annotation effort. Our results show that these data augmentation strategies can
be an efficient way of increasing accuracy on metastasis detection, but
fore-most increase robustness.
Related papers
- Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - Pathology-and-genomics Multimodal Transformer for Survival Outcome
Prediction [43.1748594898772]
We propose a multimodal transformer (PathOmics) integrating pathology and genomics insights into colon-related cancer survival prediction.
We emphasize the unsupervised pretraining to capture the intrinsic interaction between tissue microenvironments in gigapixel whole slide images.
We evaluate our approach on both TCGA colon and rectum cancer cohorts, showing that the proposed approach is competitive and outperforms state-of-the-art studies.
arXiv Detail & Related papers (2023-07-22T00:59:26Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
We present a novel approach for unpaired image-to-image translation of prostate MRIs and an uncertainty-aware training approach for classifying clinically significant PCa.
Our approach involves a novel pipeline for translating unpaired 3.0T multi-parametric prostate MRIs to 1.5T, thereby augmenting the available training data.
Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work.
arXiv Detail & Related papers (2023-07-02T05:26:54Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Robust Tumor Detection from Coarse Annotations via Multi-Magnification
Ensembles [11.070094685209598]
We present a novel ensemble method that significantly improves the detection accuracy of metastasis on the open CAMELYON16 data set of sentinel lymph nodes of breast cancer patients.
Our experiments show that better results can be achieved with our technique making it clinically feasible to use for cancer diagnosis.
arXiv Detail & Related papers (2023-03-29T08:41:22Z) - Domain adaptation strategies for cancer-independent detection of lymph
node metastases [8.00124399861179]
Large, high-quality public datasets have led to the development of convolutional neural networks that can detect lymph node metastases of breast cancer.
We show how to leverage existing high-quality datasets most efficiently in multi-task settings for closely related tasks.
arXiv Detail & Related papers (2022-07-13T13:41:20Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Deep Semi-supervised Metric Learning with Dual Alignment for Cervical
Cancer Cell Detection [49.78612417406883]
We propose a novel semi-supervised deep metric learning method for cervical cancer cell detection.
Our model learns an embedding metric space and conducts dual alignment of semantic features on both the proposal and prototype levels.
We construct a large-scale dataset for semi-supervised cervical cancer cell detection for the first time, consisting of 240,860 cervical cell images.
arXiv Detail & Related papers (2021-04-07T17:11:27Z) - A Study of Deep Learning Colon Cancer Detection in Limited Data Access
Scenarios [6.338265282525758]
Deep learning methods for classification and detection have shown great potential, but often require large amounts of training data.
For many cancer types, the scarceness of data creates barriers for training DL models.
We show how it is possible to detect cancer metastasis with no or very little lymph node data, opening up for the possibility that existing, annotated histopathology data could generalize to other domains.
arXiv Detail & Related papers (2020-05-20T19:28:07Z) - A Novel and Efficient Tumor Detection Framework for Pancreatic Cancer
via CT Images [21.627818410241552]
A novel and efficient pancreatic tumor detection framework is proposed in this paper.
The contribution of the proposed method mainly consists of three components: Augmented Feature Pyramid networks, Self-adaptive Feature Fusion and a Dependencies Computation Module.
Experimental results achieve competitive performance in detection with the AUC of 0.9455, which outperforms other state-of-the-art methods to our best of knowledge.
arXiv Detail & Related papers (2020-02-11T15:48:22Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.