Multi-Omics Fusion with Soft Labeling for Enhanced Prediction of Distant Metastasis in Nasopharyngeal Carcinoma Patients after Radiotherapy
- URL: http://arxiv.org/abs/2502.09656v1
- Date: Wed, 12 Feb 2025 05:26:59 GMT
- Title: Multi-Omics Fusion with Soft Labeling for Enhanced Prediction of Distant Metastasis in Nasopharyngeal Carcinoma Patients after Radiotherapy
- Authors: Jiabao Sheng, SaiKit Lam, Jiang Zhang, Yuanpeng Zhang, Jing Cai,
- Abstract summary: One of the challenges encountered in the integration of omics data is the presence of unpredictability.
This study aims to develop a fusion methodology that mitigates the disparities inherent in omics data.
- Score: 4.971538849792411
- License:
- Abstract: Omics fusion has emerged as a crucial preprocessing approach in the field of medical image processing, providing significant assistance to several studies. One of the challenges encountered in the integration of omics data is the presence of unpredictability arising from disparities in data sources and medical imaging equipment. In order to overcome this challenge and facilitate the integration of their joint application to specific medical objectives, this study aims to develop a fusion methodology that mitigates the disparities inherent in omics data. The utilization of the multi-kernel late-fusion method has gained significant popularity as an effective strategy for addressing this particular challenge. An efficient representation of the data may be achieved by utilizing a suitable single-kernel function to map the inherent features and afterward merging them in a space with a high number of dimensions. This approach effectively addresses the differences noted before. The inflexibility of label fitting poses a constraint on the use of multi-kernel late-fusion methods in complex nasopharyngeal carcinoma (NPC) datasets, hence affecting the efficacy of general classifiers in dealing with high-dimensional characteristics. This innovative methodology aims to increase the disparity between the two cohorts, hence providing a more flexible structure for the allocation of labels. The examination of the NPC-ContraParotid dataset demonstrates the model's robustness and efficacy, indicating its potential as a valuable tool for predicting distant metastases in patients with nasopharyngeal carcinoma (NPC).
Related papers
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
We propose a new end-to-end framework, FORESEE, for robustly predicting patient survival by mining multimodal information.
Cross-fusion transformer effectively utilizes features at the cellular level, tissue level, and tumor heterogeneity level to correlate prognosis.
The hybrid attention encoder (HAE) uses the denoising contextual attention module to obtain the contextual relationship features.
We also propose an asymmetrically masked triplet masked autoencoder to reconstruct lost information within modalities.
arXiv Detail & Related papers (2024-05-13T12:39:08Z) - SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival [8.403756148610269]
Multimodal prediction of cancer patient survival offers a more comprehensive and precise approach.
This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders.
Our method significantly outperforms state-of-the-art methods in both modality-missing and intra-modality information-confirmed cases.
arXiv Detail & Related papers (2024-03-14T11:23:39Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Cross-modality Attention-based Multimodal Fusion for Non-small Cell Lung
Cancer (NSCLC) Patient Survival Prediction [0.6476298550949928]
We propose a cross-modality attention-based multimodal fusion pipeline designed to integrate modality-specific knowledge for patient survival prediction in non-small cell lung cancer (NSCLC)
Compared with single modality, which achieved c-index of 0.5772 and 0.5885 using solely tissue image data or RNA-seq data, respectively, the proposed fusion approach achieved c-index 0.6587 in our experiment.
arXiv Detail & Related papers (2023-08-18T21:42:52Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Improved Multimodal Fusion for Small Datasets with Auxiliary Supervision [3.8750633583374143]
We propose three simple methods for improved multimodal fusion with small datasets.
The proposed methods are straightforward to implement and can be applied to any classification task with paired image and non-image data.
arXiv Detail & Related papers (2023-04-01T20:07:10Z) - RadioPathomics: Multimodal Learning in Non-Small Cell Lung Cancer for
Adaptive Radiotherapy [1.8161758803237067]
We develop a multimodal late fusion approach to predict radiation therapy outcomes for non-small-cell lung cancer patients.
Experiments show that the proposed multimodal paradigm with an AUC equal to $90.9%$ outperforms each unimodal approach.
arXiv Detail & Related papers (2022-04-26T16:32:52Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.