論文の概要: Accelerated Stochastic Gradient for Nonnegative Tensor Completion and
Parallel Implementation
- arxiv url: http://arxiv.org/abs/2109.09534v1
- Date: Mon, 20 Sep 2021 13:32:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-21 16:03:07.316342
- Title: Accelerated Stochastic Gradient for Nonnegative Tensor Completion and
Parallel Implementation
- Title(参考訳): 非負テンソル完全化と並列実装のための加速確率勾配
- Authors: Ioanna Siaminou, Ioannis Marios Papagiannakos, Christos Kolomvakis,
Athanasios P. Liavas
- Abstract要約: 我々は、交互最適化フレームワークを採用し、勾配加速アルゴリズムのバリエーションを用いて、各非負行列補完問題を解く。
高速化を実現するマルチスレッドAPI OpenMP を用いて,提案アルゴリズムの共有メモリ実装を開発する。
- 参考スコア(独自算出の注目度): 0.3670422696827525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of nonnegative tensor completion. We adopt the
alternating optimization framework and solve each nonnegative matrix completion
problem via a stochastic variation of the accelerated gradient algorithm. We
experimentally test the effectiveness and the efficiency of our algorithm using
both real-world and synthetic data. We develop a shared-memory implementation
of our algorithm using the multi-threaded API OpenMP, which attains significant
speedup. We believe that our approach is a very competitive candidate for the
solution of very large nonnegative tensor completion problems.
- Abstract(参考訳): 我々は非負のテンソル完全化の問題を考える。
我々は交互最適化フレームワークを採用し,加速度勾配アルゴリズムの確率的変動により,各非負行列完了問題を解く。
実世界データと合成データの両方を用いてアルゴリズムの有効性と効率を実験的に検証した。
高速化を実現するマルチスレッドAPI OpenMP を用いて,提案アルゴリズムの共有メモリ実装を開発する。
我々のアプローチは、非常に大きな非負のテンソル完成問題の解に対する非常に競争的な候補であると信じています。
関連論文リスト
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
本稿では,反復的BONDと自己プレイアライメントの統一的なゲーム理論接続を明らかにする。
WINレート支配(WIN rate Dominance, WIND)という新しいフレームワークを構築し, 正規化利率支配最適化のためのアルゴリズムを多数提案する。
論文 参考訳(メタデータ) (2024-10-28T04:47:39Z) - A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent [57.64826450787237]
本研究では, 分散勾配降下アルゴリズムの挙動を, 敵対的腐敗の有無で解析する方法を示す。
汚職耐性の分散最適化アルゴリズムを設計するために、(怠慢な)ミラー降下からアイデアをどう使うかを示す。
MNISTデータセットの線形回帰、サポートベクトル分類、ソフトマックス分類に基づく実験は、我々の理論的知見を裏付けるものである。
論文 参考訳(メタデータ) (2024-07-19T08:29:12Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Nystrom Method for Accurate and Scalable Implicit Differentiation [25.29277451838466]
我々は,Nystrom法が他の手法と同等あるいは優れた性能を連続的に達成していることを示す。
提案手法は数値的な不安定さを回避し,反復を伴わない行列演算で効率的に計算できる。
論文 参考訳(メタデータ) (2023-02-20T02:37:26Z) - Low-rank Tensor Learning with Nonconvex Overlapped Nuclear Norm
Regularization [44.54772242784423]
低ランク学習行列に対する効率的な非正規化アルゴリズムを開発した。
提案アルゴリズムは、高価な折り畳み/折り畳み問題を回避することができる。
実験の結果,提案アルゴリズムは既存の状態よりも効率的で空間が広いことがわかった。
論文 参考訳(メタデータ) (2022-05-06T07:47:10Z) - Slowly Varying Regression under Sparsity [5.22980614912553]
本稿では, 緩やかな過度回帰の枠組みを提示し, 回帰モデルが緩やかかつスパースな変動を示すようにした。
本稿では,バイナリ凸アルゴリズムとして再構成する手法を提案する。
結果として得られたモデルは、様々なデータセット間で競合する定式化よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-22T04:51:44Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
問題に対処するための新しいアルゴリズム - Momentum- Single-timescale Approximation (MSTSA) を提案する。
MSTSAでは、低いレベルのサブプロブレムに対する不正確な解決策のため、反復でエラーを制御することができます。
論文 参考訳(メタデータ) (2021-02-15T07:10:33Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
本稿では、収束保証付き非正則正規化器のためのワーキングセットアルゴリズムを提案する。
その結果,ブロックコーディネートや勾配ソルバの完全解法と比較して高い利得を示した。
論文 参考訳(メタデータ) (2020-06-24T07:40:31Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z) - Efficient Algorithms for Multidimensional Segmented Regression [42.046881924063044]
多次元回帰を用いた固定設計の基本問題について検討する。
我々は任意の固定次元におけるこの問題に対する最初のサンプルと計算効率のよいアルゴリズムを提供する。
提案アルゴリズムは,多次元的条件下では新規な,単純なマージ反復手法に依存している。
論文 参考訳(メタデータ) (2020-03-24T19:39:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。